lab.generic module¶
-
lab.generic.abs[source]¶ Absolute value.
- Parameters
a (tensor) – Tensor.
- Returns
Absolute value of a.
- Return type
tensor
-
lab.generic.add[source]¶ Add two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
Sum of a and b.
- Return type
tensor
-
lab.generic.all[source]¶ Logical all of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.any[source]¶ Logical any of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.argsort[source]¶ Get the indices that would a tensor along an axis in ascending order.
- Parameters
a (tensor) – Tensor to sort.
axis (int, optional) – Axis to sort along. Defaults to -1.
descending (bool, optional) – Sort in descending order. Defaults to False.
- Returns
The indices that would sort a.
- Return type
tensor
-
lab.generic.bvn_cdf[source]¶ Standard bivariate normal CDF. Computes the probability that X < a and Y < b if X ~ N(0, 1), Y ~ N(0, 1), and X and Y have correlation c.
- Parameters
a (tensor) – First upper limit. Must be a rank-one tensor.
b (tensor) – Second upper limit. Must be a rank-one tensor.
c (tensor) – Correlation coefficient. Must be a rank-one tensor.
- Returns
Probabilities of the same shape as the input.
- Return type
tensor
-
lab.generic.cast[source]¶ Cast an object to another data type.
- Parameters
dtype (dtype) – New data type.
a (tensor) – Tensor to cast.
- Returns
a, but of data type dtype.
- Return type
tensor
-
lab.generic.cos[source]¶ Cosine function.
- Parameters
a (tensor) – Tensor.
- Returns
Cosine function evaluated at a.
- Return type
tensor
-
lab.generic.divide[source]¶ Divide two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a divided by b.
- Return type
tensor
-
lab.generic.erf[source]¶ Error function.
- Parameters
a (tensor) – Tensor.
- Returns
Error function evaluated at a.
- Return type
tensor
-
lab.generic.exp[source]¶ Exponential function.
- Parameters
a (tensor) – Tensor.
- Returns
Exponential function evaluated at a.
- Return type
tensor
-
lab.generic.eye[source]¶ Create an identity matrix.
Can also give a reference tensor whose data type and shape will be used to construct an identity matrix.
- Parameters
dtype (dtype, optional) – Data type. Defaults to the default data type.
*shape (shape) – Shape of the matrix.
- Returns
Identity matrix of shape shape and data type dtype.
- Return type
tensor
-
lab.generic.ge[source]¶ Check whether one tensor is greater than or equal to another.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a is greater than or equal to b.
- Return type
tensor[bool]
-
lab.generic.gt[source]¶ Check whether one tensor is strictly greater than another.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a is strictly greater than b.
- Return type
tensor[bool]
-
lab.generic.identity[source]¶ Identity function
- Parameters
a (tensor) – Tensor.
- Returns
a exactly.
- Return type
tensor
-
lab.generic.isnan[source]¶ Check whether a tensor is NaN.
- Parameters
a (tensor) – Tensor.
- Returns
a is NaN.
- Return type
tensor[bool]
-
lab.generic.le[source]¶ Check whether one tensor is less than or equal to another.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a is less than or equal to b.
- Return type
tensor[bool]
-
lab.generic.leaky_relu[source]¶ Leaky rectified linear unit.
- Parameters
a (tensor) – Input.
alpha (tensor) – Coefficient of leak.
- Returns
Activation value.
- Return type
tensor
-
lab.generic.linspace[source]¶ Create a vector of c numbers ranging from a to c, distributed linearly.
- Parameters
dtype (dtype, optional) – Data type. Defaults to the default data type.
a (number) – Lower bound.
b (number) – Upper bound.
num (int) – Number of numbers.
- Returns
c numbers ranging from a to c, distributed linearly.
- Return type
vector
-
lab.generic.log[source]¶ Logarithmic function
- Parameters
a (tensor) – Tensor.
- Returns
Logarithmic function evaluated at a.
- Return type
tensor
-
lab.generic.log_2_pi= 1.8378770664093453¶ Value of log(2 * pi).
-
lab.generic.logsumexp[source]¶ Exponentiate a tensor, sum it, and then take the logarithm, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.lt[source]¶ Check whether one tensor is strictly less than another.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a is strictly less than b.
- Return type
tensor[bool]
-
lab.generic.max[source]¶ Take the maximum of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.maximum[source]¶ Take the maximum of two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
Maximum of a and b.
- Return type
tensor
-
lab.generic.mean[source]¶ Take the mean of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.min[source]¶ Take the minimum of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.minimum[source]¶ Take the minimum of two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
Minimum of a and b.
- Return type
tensor
-
lab.generic.multiply[source]¶ Multiply two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
Product of a and b.
- Return type
tensor
-
lab.generic.nan= nan¶ NaN.
-
lab.generic.negative[source]¶ Negate a tensor.
- Parameters
a (tensor) – Tensor.
- Returns
Negative of a.
- Return type
tensor
-
lab.generic.one[source]¶ Create a 1 with a particular data type.
- Parameters
dtype (dtype) – Data type.
- Returns
1 with data type dtype.
- Return type
scalar
-
lab.generic.ones[source]¶ Create a tensor of ones.
Can also give a reference tensor whose data type and shape will be used to construct a tensor of ones.
- Parameters
dtype (dtype, optional) – Data type. Defaults to the default data type.
*shape (shape) – Shape of the tensor.
- Returns
Tensor of ones of shape shape and data type dtype.
- Return type
tensor
-
lab.generic.pi= 3.141592653589793¶ Value of pi.
-
lab.generic.power[source]¶ Raise a tensor to a power.
- Parameters
a (tensor) – Tensor.
power (tensor) – Power.
- Returns
a to the power of power.
- Return type
tensor
-
lab.generic.range[source]¶ Create a vector of numbers ranging from start to stop with step size step.
- Parameters
dtype (dtype, optional) – Data type. Defaults to int.
start (number, optional) – Start of range. Defaults to 0.
stop (number) – End of range.
step (number, optional) – Step size. Defaults to 1.
- Returns
Numbers ranging from start to stop with step size step.
- Return type
vector
-
lab.generic.relu[source]¶ Rectified linear unit.
- Parameters
a (tensor) – Tensor.
- Returns
Rectified linear unit evaluated at a.
- Return type
tensor
-
lab.generic.scan[source]¶ Perform a TensorFlow-style scanning operation.
- Parameters
f (function) – Scanning function.
xs (tensor) – Tensor to scan over.
*init_state (tensor) – Initial state.
-
lab.generic.sigmoid[source]¶ Sigmoid function.
- Parameters
a (tensor) – Tensor.
- Returns
Sigmoid function evaluated at a.
- Return type
tensor
-
lab.generic.sign[source]¶ Sign function.
- Parameters
a (tensor) – Tensor.
- Returns
Sign of a.
- Return type
tensor
-
lab.generic.sin[source]¶ Sine function.
- Parameters
a (tensor) – Tensor.
- Returns
Sine function evaluated at a.
- Return type
tensor
-
lab.generic.softplus[source]¶ Softplus function.
- Parameters
a (tensor) – Tensor.
- Returns
Softplus function evaluated at a.
- Return type
tensor
-
lab.generic.sort[source]¶ Sort a tensor along an axis in ascending order.
- Parameters
a (tensor) – Tensor to sort.
axis (int, optional) – Axis to sort along. Defaults to -1.
descending (bool, optional) – Sort in descending order. Defaults to False.
- Returns
a, but sorted.
- Return type
tensor
-
lab.generic.sqrt[source]¶ Square root.
- Parameters
a (tensor) – Tensor.
- Returns
Square root of a.
- Return type
tensor
-
lab.generic.std[source]¶ Compute the standard deviation of a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.subtract[source]¶ Subtract two tensors.
- Parameters
a (tensor) – First tensor.
b (tensor) – Second tensor.
- Returns
a minus b.
- Return type
tensor
-
lab.generic.sum[source]¶ Sum a tensor, possibly along an axis.
- Parameters
a (tensor) – Tensor.
axis (int, optional) – Optional axis.
- Returns
Reduced tensor.
- Return type
tensor
-
lab.generic.tan[source]¶ Tangent function.
- Parameters
a (tensor) – Tensor.
- Returns
Tangent function evaluated at a.
- Return type
tensor
-
lab.generic.tanh[source]¶ Tangent hyperbolic function.
- Parameters
a (tensor) – Tensor.
- Returns
Tangent hyperbolic function evaluated at a.
- Return type
tensor
-
lab.generic.to_numpy[source]¶ Convert an object to NumPy.
- Parameters
a (object) – Object to convert.
- Returns
a as NumPy.
- Return type
np.ndarray
-
lab.generic.zero[source]¶ Create a 0 with a particular data type.
- Parameters
dtype (dtype) – Data type.
- Returns
0 with data type dtype.
- Return type
scalar
-
lab.generic.zeros[source]¶ Create a tensor of zeros.
Can also give a reference tensor whose data type and shape will be used to construct a tensor of zeros.
- Parameters
dtype (dtype, optional) – Data type. Defaults to the default data type.
*shape (shape) – Shape of the tensor.
- Returns
Tensor of zeros of shape shape and data type dtype.
- Return type
tensor