LAB¶
A generic interface for linear algebra backends: code it once, run it on any backend
Basic Usage¶
The basic use case for the package is to write code that automatically determines the backend to use depending on the types of its arguments.
Example:
import lab as B
import lab.autograd # Load the AutoGrad extension.
import lab.torch # Load the PyTorch extension.
import lab.tensorflow # Load the TensorFlow extension.
import lab.jax # Load the Jax extension.
def objective(matrix):
outer_product = B.matmul(matrix, matrix, tr_b=True)
return B.mean(outer_product)
The AutoGrad, PyTorch, TensorFlow, and Jax extensions are not loaded
automatically to not enforce a dependency on all three frameworks. An
extension can alternatively be loaded via import lab.autograd as B
.
Run it with NumPy and AutoGrad:
>>> import autograd.numpy as np
>>> objective(B.randn(np.float64, 2, 2))
0.15772589216756833
>>> grad(objective)(B.randn(np.float64, 2, 2))
array([[ 0.23519042, -1.06282928],
[ 0.23519042, -1.06282928]])
Run it with TensorFlow:
>>> import tensorflow as tf
>>> objective(B.randn(tf.float64, 2, 2))
<tf.Tensor 'Mean:0' shape=() dtype=float64>
Run it with PyTorch:
>>> import torch
>>> objective(B.randn(torch.float64, 2, 2))
tensor(1.9557, dtype=torch.float64)
Run it with Jax:
>>> import jax
>>> import jax.numpy as jnp
>>> jax.jit(objective)(B.randn(jnp.float32, 2, 2))
DeviceArray(0.3109299, dtype=float32)
>>> jax.jit(jax.grad(objective))(B.randn(jnp.float32, 2, 2))
DeviceArray([[ 0.2525182, -1.26065 ],
[ 0.2525182, -1.26065 ]], dtype=float32)
List of Types¶
This section lists all available types, which can be used to check types of objects or extend functions.
Example:
>>> import lab as B
>>> from plum import List, Tuple
>>> import numpy as np
>>> isinstance([1., np.array([1., 2.])], List(B.NPNumeric))
True
>>> isinstance([1., np.array([1., 2.])], List(B.TFNumeric))
False
>>> import tensorflow as tf
>>> import lab.tensorflow
>>> isinstance((tf.constant(1.), tf.ones(5)), Tuple(B.TFNumeric))
True
General¶
Int # Integers
Float # Floating-point numbers
Bool # Booleans
Number # Numbers
Numeric # Numerical objects, including booleans
DType # Data type
Framework # Anything accepted by supported frameworks
NumPy¶
NPNumeric
NPDType
NP # Anything NumPy
AutoGrad¶
AGNumeric
AGDType
AG # Anything AutoGrad
TensorFlow¶
TFNumeric
TFDType
TF # Anything TensorFlow
PyTorch¶
TorchNumeric
TorchDType
Torch # Anything PyTorch
Jax¶
JaxNumeric
JaxDType
Jax # Anything Jax
List of Methods¶
This section lists all available constants and methods.
Arguments must be given as arguments and keyword arguments must be given as keyword arguments. For example,
sum(tensor, axis=1)
is valid, butsum(tensor, 1)
is not.The names of arguments are indicative of their function:
a
,b
, andc
indicate general tensors.dtype
indicates a data type. E.g,np.float32
ortf.float64
; andrand(np.float32)
creates a NumPy random number, whereasrand(tf.float64)
creates a TensorFlow random number. Data types are always given as the first argument.shape
indicates a shape. The dimensions of a shape are always given as separate arguments to the function. E.g.,reshape(tensor, 2, 2)
is valid, butreshape(tensor, (2, 2))
is not.axis
indicates an axis over which the function may perform its action. An axis is always given as a keyword argument.ref
indicates a reference tensor from which properties, like its shape and data type, will be used. E.g.,zeros(tensor)
creates a tensor full of zeros of the same shape and data type astensor
.
See the documentation for more detailed descriptions of each function.
Special Variables¶
default_dtype # Default data type.
epsilon # Magnitude of diagonal to regularise matrices with.
Constants¶
nan
pi
log_2_pi
Generic¶
isnan(a)
zeros(dtype, *shape)
zeros(*shape)
zeros(ref)
ones(dtype, *shape)
ones(*shape)
ones(ref)
one(dtype)
one(ref)
zero(dtype)
zero(ref)
eye(dtype, *shape)
eye(*shape)
eye(ref)
linspace(dtype, a, b, num)
linspace(a, b, num)
range(dtype, start, stop, step)
range(dtype, stop)
range(dtype, start, stop)
range(start, stop, step)
range(start, stop)
range(stop)
cast(dtype, a)
identity(a)
negative(a)
abs(a)
sign(a)
sqrt(a)
exp(a)
log(a)
sin(a)
cos(a)
tan(a)
tanh(a)
erf(a)
sigmoid(a)
softplus(a)
relu(a)
add(a, b)
subtract(a, b)
multiply(a, b)
divide(a, b)
power(a, b)
minimum(a, b)
maximum(a, b)
leaky_relu(a, alpha)
min(a, axis=None)
max(a, axis=None)
sum(a, axis=None)
mean(a, axis=None)
std(a, axis=None)
logsumexp(a, axis=None)
all(a, axis=None)
any(a, axis=None)
lt(a, b)
le(a, b)
gt(a, b)
ge(a, b)
bvn_cdf(a, b, c)
scan(f, xs, *init_state)
sort(a, axis=-1, descending=False)
argsort(a, axis=-1, descending=False)
to_numpy(a)
Linear Algebra¶
transpose(a, perm=None) (alias: t, T)
matmul(a, b, tr_a=False, tr_b=False) (alias: mm, dot)
trace(a, axis1=0, axis2=1)
kron(a, b)
svd(a, compute_uv=True)
solve(a, b)
inv(a)
det(a)
logdet(a)
expm(a)
logm(a)
cholesky(a) (alias: chol)
cholesky_solve(a, b) (alias: cholsolve)
triangular_solve(a, b, lower_a=True) (alias: trisolve)
toeplitz_solve(a, b, c) (alias: toepsolve)
toeplitz_solve(a, c)
outer(a, b)
reg(a, diag=None, clip=True)
pw_dists2(a, b)
pw_dists2(a)
pw_dists(a, b)
pw_dists(a)
ew_dists2(a, b)
ew_dists2(a)
ew_dists(a, b)
ew_dists(a)
pw_sums2(a, b)
pw_sums2(a)
pw_sums(a, b)
pw_sums(a)
ew_sums2(a, b)
ew_sums2(a)
ew_sums(a, b)
ew_sums(a)
Random¶
set_random_seed(seed)
rand(dtype, *shape)
rand(*shape)
rand(ref)
randn(dtype, *shape)
randn(*shape)
randn(ref)
choice(a, n)
choice(a)
Shaping¶
shape(a)
rank(a)
length(a) (alias: size)
isscalar(a)
expand_dims(a, axis=0)
squeeze(a)
uprank(a)
diag(a)
flatten(a)
vec_to_tril(a, offset=0)
tril_to_vec(a, offset=0)
stack(*elements, axis=0)
unstack(a, axis=0)
reshape(a, *shape)
concat(*elements, axis=0)
concat2d(*rows)
tile(a, *repeats)
take(a, indices, axis=0)