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I Introduction

I.1 Probabilistic Modelling

Modelling is central to science: it provides insights into phenomena, helps us make
predictions, and allows us to test hypotheses. An important aspect of modelling is the
ability to quantify uncertainty, e.g. uncertainty in forecasts or uncertainty about what
the model parameters should be. The probabilistic approach to modelling expresses
uncertainty with the language of probability theory. Bayesian modelling, in this context,
is synonymous with the probabilistic approach in that it uses probability theory estimate
model parameters from data, make forecasts, and test hypotheses.

Let us clear up some common misconceptions about Bayesian modelling. Fundamen-
tally, Bayesian modelling uses probability theory—the sum rule and product rule in
particular—to represent and manipulate all forms of uncertainty in the model. These
two rules yield Bayes’ rule. Bayes’ rule tells us how to update our uncertainty about
any aspect of our model, say the random variable θ, in light of newly observed data
X:

P (θ |X) =
P (X | θ)P (θ)

P (X)
.

Here the prior P (θ), our belief about θ before observing any data, is updated the
posterior P (θ |X), our belief about θ after observing X. This requires us to explicitly
specify a prior P (θ) before we observe any data, which is one of the common objections
to Bayesian modelling. Specifying the prior P (θ) should be viewed as stating our
assumptions about the model. Crucially, all models make assumptions, and, instead of
hiding these assumptions, the Bayesian approach uses the language of probability to
make them explicit. Another common objection is that model parameters are treated as
random variables—that a true set of parameters exist, so it does not make sense to treat
them as random variables. This too is a misunderstanding. In the Bayesian framework,
probabilities are used to represent our belief of the parameters θ. Whether or not
some true, fixed set of parameters θ exist is a different matter; P (θ) just represents our
understanding of what θ might be.

In this framework, modelling becomes a simple two step procedure: (1) write down
your assumptions with the language of probability theory and (2) once data is observed,
use the rules of probability theory to make inferences about unknown quantities in
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the model. This procedure decouples modelling and making predictions, which often
become entangled when the goal is to make forecasts: first build a model that encodes
your assumptions and then use this model to make predictions.

Stemming from their interpretability, modularity, and tractability, Gaussian processes
(GPs) form a powerful and popular framework for probabilistic modelling (Rasmussen
et al., 2006). Gaussian processes are successfully applied in a wide variety of contexts:
they can be used to automatically discover structure in signals (David Duvenaud, 2014),
are state of the art in numerous regression tasks (T. D. Bui et al., 2016b), provide
data-efficient models in reinforcement learning (Deisenroth et al., 2011), and find many
applications in probabilistic numerics (Hennig et al., 2015), such as in optimisation
(Brochu et al., 2010) and quadrature (Minka, 2000).

Contrary to parametric models, there is no finite number of parameters that parametrise
a Gaussian process. Instead, the model complexity of a Gaussian process grows as
evidence is accumulated; such models are called nonparametric models. This property
allows Gaussian processes to learn complex functions if plenty of evidence is available,
and conversely makes them robust against overfitting if only little evidence is at
hand.

Gaussian processes achieve this automatic calibration of model complexity by placing
a prior distribution directly on the space of functions. They can be thought of as the
infinite-dimensional generalisation of a multivariate normal distribution. In same the
way as a multivariate normal is parametrised by a mean vector and covariance matrix,
a Gaussian process is parametrised by a mean function and a covariance function—the
latter is also often called the kernel. The kernel of a Gaussian process determines
the properties of the functions that are supported by the induced prior on the space
of functions. Consequently, it is crucial to choose the kernel correctly. But choosing
an appropriate kernel is often difficult, where even experts use a little bit of black
magic.

This reveals the first issue with Gaussian processes, which is the choice of kernel; we
refer to this problem as the kernel design problem. The second issue with Gausssian
processes is that they are computationally expensive. For N observations, inference
and learning take O(N3) time and O(N2) memory. These complexities are even worse
in the multi-output setting: if every observation has P outputs, then inference and
learning take O(N3P 3) time and and O(N2P 2) memory.
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I.2 Gaussian Processes

A Gaussian process is an infinite collection of real-valued random variables (f(t))t∈T

indexed on some set T such that all finite-dimensional distributions1 (f.d.d.’s) are
Gaussian. Often, T = R is time, or T = RD is some feature space. These f.d.d.’s must
be consistent in the sense that they respect marginalisation and permutations of the
variables. The f.d.d.’s then uniquely extend to a distribution on the space of functions,
a consequence of the Kolmogorov Extension Theorem.

The mean function m : T → R and kernel k : T ×T → R of a Gaussian process specify
the mean and covariance of the f.d.d.’s, in the following way: if (t1, . . . , tN) ∈ T n,
then 

f(t1)
...

f(tN)

 ∼ N


m(t1)

...
m(tN)

 ,

k(t1, t1) · · · k(t1, tN)

... . . . ...
k(tN , t1) · · · k(tN , tN)


.

The kernel k must be such every such covariance matrix is a valid covariance matrix, i.e.
a positive-definite matrix; we say that the kernel k must be a positive-definite function.
One often writes f ∼ GP(m, k) to mean that (f(t))t∈T is a Gaussian process with
f.d.d.’s specified by the mean function m and kernel k.

Given some observations y(t1), . . . , y(tN ) of an unknown function f , a Gaussian process
can be used to make predictions about that function f at unseen inputs. Assume
that f ∼ GP(m, k), where the mean function m and kernel k best express our prior
knowledge about the unknown function f . The observations y(t1), . . . , y(tN) are
typically contaminated with noise. One way of modelling this is to assume that the
noise (ε(t))t∈T is identically and independently distributed with distribution N (0, σ2).
An observation y(t) is then modelled—we also say generated—by the sum of f(t) and
ε(t):

y(t) | f, ε = f(t) + ε(t).

These assumptions induce a jointly Gaussian distribution over (y(t), f(t))t∈T , an-
other Gaussian process. We can now use the usual rules for multivariate normals to

1 If t1, . . . , tN are finitely many elements from T , then the corresponding f.d.d. is given by the
distribution of the random vector (f(t1), . . . , f(tN )).
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compute the distribution of f(t) | (y(t1), . . . , y(tN)), which is the prediction for f(t)

given observations y(t1), . . . , y(tN). This illustrates the Gaussian process modelling
framework.

The kernel of a Gaussian process f usually depends on some parameters θ, also called
hyperparameters of f . One principled way of selecting the hyperparameters θ is to use
maximum likelihood estimation (Rasmussen et al., 2006):

θ∗ = arg max
θ

log p(y(t1), . . . , y(tN) | θ).

Here p(y(t1), . . . , y(tN) | θ) is also called the (model) evidence. Choosing θ in this way
tends to explain the observations in an appropriately simple way, which is commonly
recognised as a manifestation of Occam’s razor (MacKay, 2002).

Gaussian processes can also be used to model multi-output functions. The construction
is analogous to the single-output case: a P -dimensional multi-output Gaussian process
(MOGP) is an infinite collection of real-valued random variables (f1(t), . . . , fP (t))t∈T

indexed on some index set T such that all f.d.d.’s are Gaussian and consistent in
the aforementioned sense. The mean and covariance f.d.d.’s are now specified by a
multi-output mean function m : T → RP and multi-output kernel K : T → RP×P :

m(t) =


E(f1(t))

...
E(fp(t))

 , K(t, t′) =


cov (f1(t), f1(t

′)) · · · cov (f1(t), fP (t′))
... . . . ...

cov (fP (t), f1(t
′)) · · · cov (fP (t), fP (t′))

 .
Similar to the one-dimensional case, one often collects f(t) =

[
f1(t) · · · fP (t)

]T and
writes f ∼ GP(m,K) to mean that (f(t))t∈T is a multi-output Gaussian process with
f.d.d.’s specified by the multi-output mean function m and multi-output kernel K.

I.2.1 Choice of Kernel

Table 1 list of five commonly used kernels and the assumptions about the function that
they encode. Out these five, perhaps the most commonly used one is the exponentiated-
quadratic (EQ) kernel, also known as the squared-exponential (SE) kernel, given
by

k(t, t′) = σ2 exp

(
− 1

2`2
‖t− t′‖2

)
,
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Name Form of k Assumption about f ∼ GP(0, k)

Constant k(t, t′) = σ2 Function is constant

Linear k(t, t′) = t · t′ Function is linear

Exponentiated
quadratic (EQ)

k(t, t′) = exp

(
−1

2
‖t− t′‖2

)
Function is smooth and wiggles in
1D on length scale

√
π/2 ≈ 1.2

Rational
quadratic (RQ)

k(t, t′) =

(
1 +
‖t− t′‖2

2α

)−α
Function is smooth and wiggles on
many length scales

Exponential k(t, t′) = exp(−‖t− t′‖) Function is nondifferentiable and
wiggles on length scale 1

Table 1: List of five commonly used kernels and the assumptions about the function that
they encode. See Chapter 4 in the book by Rasmussen et al. (2006) for a comprehensive
exposition on covariance functions.

where σ2 is the variance and ` the length scale; Figure 1 shows samples from a GP with
an EQ for various length scales. If the kernel is modified in the following way,

k(t, t′) = σ2 exp

(
−

D∑
d=1

(td − t′d)2

2`d
2

)
,

then it is often said to have automatic relevance determination (ARD). What sets
apart the SEARD kernel from the standard SE is that every dimension of the input
now has its own length scale. This way, when the hyperparameters are learned, the
kernel can scale the data independently in every dimension. Roughly, the length scale
`d determines the length of a “wiggle” in dimension d, and determines how far away
from the data the Gaussian process can extrapolate.

I.3 Deep Gaussian Processes

Deep neural networks (DNNs) have garnered a great deal of attention in the machine
learning community due to their impressive performance in pattern recognition tasks
and in applied domains such as computer vision and natural language processing
(LeCun et al., 2015). Deep neural networks are large, flexible, parametric models.
They have the problem that the architecture needs to be specified. And once specified,
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Figure 1: Samples from a GP with an EQ kernel for various length scales `

the complexity of the network is fixed, regardless of the size of the data set. Deep
Gaussian Processes (DGPs; Damianou (2014)) combine the representational power of
DNNs with the ability of Gaussian processes to increase in complexity as more data is
observed.

A Deep Gaussian Process is a distribution over functions constructed by composing
functions that each have a Gaussian process prior. For example, if f (1) ∼ GP(0, k(1)),
. . ., f (N) ∼ GP(0, k(N)), then a Deep Gaussian Process can be constructed by

f(t) = (f (N) ◦ · · · ◦ f (1))(t) = f (N)(· · · f (1)(t) · · · ).

Performing inference in a Deep Gaussian Process model is not easy; one most resort to
approximate inference techniques.

In a sense, DGPs are actually not that different from Bayesian DNNs. Matthews et al.
(2018) have recently shown that, under broad conditions, the random function implied
by a Bayesian neural network converges in distribution to a Gaussian process as the
architecture becomes wide, an observation first made by Neal (1995).

I.4 Tools From Spectral Theory

Recall that the kernel determines the nature of the kinds of functions that can be learned
by the Gaussian process. A kernel function k is called stationary, or shift-invariant, if
k(t, t′) = k(t− t′, 0). If this is the case, we often denote τ = t− t′ and abuse notation
to write the kernel as a function of just one variable: k(τ) = k(t− t′, 0). Intuitively, if
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Figure 2: Visualisation of a vector-valued Deep Gaussian Process. Figure taken from
D. Duvenaud et al. (2014).

the kernel is stationary, then the covariance between f(t) and f(t′) only depends on
how far t and t′ are apart.

The two main tools from spectral theory that we will be using, but will not prove, are
Mercer’s Theorem and Bochner’s Theorem:

Theorem I.1 (Mercer’s). Let (X,µ) be a finite measure space and k ∈ L∞(X2, µ2)

be a kernel such that

Tk : L2(X,µ)→ L2(X,µ), Tk(f) = x 7→
∫
k(x, x′)f(x′) dµ(x′)

is a positive-definite map. Let (φi)
∞
i=1 be the normalised eigenfunctions of Tk associated

with positive eigenvalues (λi)
∞
i=1. Then the eigenvalues are absolutely summable and

k(x, x′) =
∞∑
i=1

λiφi(x)φ∗i (x
′)

holds µ2-a.e., where the series converges absolutely and uniformly µ2-a.e. J

Theorem I.2 (Bochner’s). An integrable function k : RD → R is a stationary kernel
and continuous at zero if and only if there exists a nonnegative function s : RD → C
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such that

k(τ) =

∫
eιτ

Tωs(ω) dω,

where ι denotes the complex unit. J

Bochner’s Theorem admits a multivariate extension, known as Cramér’s Theorem,
which we also state in terms of densities (Parra et al., 2017):

Theorem I.3 (Cramér’s (Cramer, 1940)). An integrable function K : RD → RP×P is
a stationary multi-output kernel with all (Kii)

P
i=1 continuous at zero if and only if there

exists a nonnegative2 function S : RD → CP×P such that

K(τ) =

∫
eιτ

TωS(ω) dω. J

2 S(ω) must be a nonnegative-definite matrix for all ω.
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1 Topic 1: Kernel Approximation

1.1 Random Fourier Features

Random Fourier Features (RFFs; Rahimi et al. (2008)) are a way of alleviating the
O(N3) computational complexity that Gaussian processes have by mapping the data
to a randomised, low-dimensional feature space and applying fast, linear methods. In
this section, we show how Random Fourier Features construct an approximation of the
kernel that is structured in a way such that fast, linear methods apply, as we will see
in the next section.

Bochner’s Theorem (Theorem I.2) tells us that every stationary kernel is characterised
by its Fourier transform s(ω), a quantity that we call the power spectral density (PSD).
The PSD is nonnegative and integrable, so we can associate a probability density to
it:

p(ω) =
1

Z
s(ω), Z =

∫
s(ω) dω = k(0),

where Z = k(0) holds because because integrating the PSD yields the power of the
process: Z = E[f 2(t)] = k(0). Then, using that the PSD is symmetric because the
kernel is real valued,

k(t− t′) =

∫
eιω

T(t−t′)s(ω) dω,

=
1

2
k(0)

∫ (
eιω

T(t−t′)+e−ιωT(t−t′)
)
p(ω) dω,

=
1

2
k(0)

∫
cos(ωT(t− t′))p(ω) dω,

=
1

2
k(0)Ep(ω)[cos(ωT(t− t′))],

=
1

2
k(0)Ep(ω)[cos(ωTt) cos(ωTt′) + sin(ωTt) sin(ωTt′)].

Therefore, by taking a Monte Carlo approximation of the expectation, we find

k(t− t′) ≈ φT(t)φ(t′),

φ(t) =

√
k(0)

2M

[
cos(ωT

1 t) sin(ωT
1 t) · · · cos(ωT

M t) sin(ωT
M t)
]T

where all ωi ∼ p(ω). These random features φ are called Random Fourier Features.
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Sometimes an alternative estimator is presented, which can be derived in the following
way. Note that∫ 2π

0

cos(a+ 2b)db = 0

for any a ∈ R. In particular,

0 = Ep(ω)
[
0 · 1

2π

]
= Ep(ω)

[∫ 2π

0

cos(ωT(t+ t′) + 2b) · 1

2π
db

]
= Ep(b)p(ω)[cos(ωT(t+ t′) + 2b)]

where p(b) is the uniform distribution over [0, 2π]. Then, using the identity

cos(x− y) + cos(x+ y) = 2 cos(x) cos(y),

we see that

k(t− t′) =
1

2
k(0)

(
Ep(ω)p(b)[cos(ωT(t− t′) + b− b)]

+ Ep(ω)p(b)[cos(ωT(t+ t′) + b+ b)]
)

= k(0)Ep(ω)p(b)[cos(ωTt+ b) cos(ωTt′ + b)].

Therefore, by taking a Monte Carlo approximation of the expectation, we find

k(t− t′) ≈ φT(t)φ(t′),

φ(t) =

√
k(0)

M

[
cos(ωT

1 t+ b1) · · · cos(ωT
M t+ bM)

]T
where all ωi ∼ p(ω) and bi ∼ p(b).

1.2 Random Fourier Features for Gaussian Processes

Substituting the kernel with the approximation of the kernel yielded by RFFs sig-
nificantly simplifies the computation of the posterior distribution of the Gaussian
process.
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Figure 3: Left : approximating the SEARD kernel with 50, 100, 1000, and 10000 random
features. Right : Exact samples (“Discrete GP Samples”) and random feature samples
(“Approximate Samples”) from a GP predictive distribution.

Consider some observations y = (y(t1), . . . , y(tN))T corrupted by noise:

y(t) | f ∼ N (f(t), σ2).

The conditioning formulas for Gaussian processes then tell us that the posterior
predictive distribution is also a Gaussian process:

p(f | y) = GP(m, k),

m(t) = φT(t)ΦT(ΦΦT + σ2I)−1y,

k(t, t′) = φT(t)φ(t′)− φT(t)ΦT(ΦΦT + σ2I)−1Φφ(t′),

where

Φ =
[
φ(t1) · · · φ(tN)

]T
.

Since we have N data points, computing these expressions would take O(N3) time.
However, an application of the matrix inversion lemma shows that

m(t) = φT(t)(ΦTΦ + σ2I)−1ΦTy,

k(t, t′) = σ2φT(t)(ΦTΦ + σ2I)−1φ(t′),

and these expressions can be computed in O(NM2 +M3) time!
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The approximate model obtained by replacing the kernel with the approximation of the
kernel yielded by RFFs can be interpreted through the lens of an equivalent generative
model. The first formulation of RFFs corresponds to assuming that the underlying
function f is modelled by

f(t) = φT(t)θ =

√
k(0)

2M

[
M∑
i=1

Z
(1)
i cos(ωit) +

M∑
i=1

Z
(2)
i sin(ωit)

]

where (Z
(1)
i , Z

(2)
i )Mi=1 are i.d.d. N (0, 1) variables, all concatenated into a random vector θ.

Similarly, the second formulation of RFFs corresponds to assuming that the underlying
function f is modelled by

f(t) = φT(t)θ =

√
k(0)

M

M∑
i=1

Zi cos(ωit+ bi)

where (Zi)
M
i=1 are i.d.d. N (0, 1) variables, again all concatenated into a random vector

θ.

Although RFFs construct an unbiased estimate of the kernel, it is not guaranteed that
the sampled parameters (ωi)

M
i=1 (first formulation) or (ωi, bi)

M
i=1 (second formulation)

fit the data best. Therefore, after sampling, one could consider to optimise these
parameters through optimising the model evidence. This gives a better fit to the data,
but the approximation of the kernel is no longer unbiased. Sampling RFFs and then
optimising the sampled parameters is known as the Sparse Spectrum Approximation
(SSA) for Gaussian processes (Lázaro-Gredilla et al., 2010).

1.3 Random Fourier Features for Deep Gaussian Processes

As mentioned in Section I.3, inference in Deep Gaussian Processes (DGPs) is difficult,
so approximate methods are often used. Cutajar et al. (2017) propose to use RFFs to
approximate a DGP with the goal of making inference easier.

Let

f(t) = (f (N) ◦ · · · ◦ f (1))(t)

be a DGP, where each f (i) ∼ GP(0, K(i)) is a vector-valued Gaussian process. By
using RFFs to approximate the kernel of every f (i), we obtain approximations of the
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GPs:

f (i)(t) ≈ f̂ (i)(t) = Φ(i)T(t)Θ(i)

where Φ(i) denotes the RFFs for K(i) and Θ is a random matrix with N (0, 1) elements.
Substituting these approximate models into the expression for the DGP, we get an
approximation of the DGP, called RFF-DGP:

f(t) ≈ f̂(t)

= (f̂ (N) ◦ · · · ◦ f̂ (1))(t)

= Φ(N)T(Φ(N−1)T(· · ·Φ(1)T(t)Θ(1) · · · )Θ(N−1))Θ(N).

This reveals an exciting connection between the approximate DGP and Bayesian neural
nets: f̂ is a Bayesian neural net with a specific architecture and independent N (0, 1)

priors on the weights!

Cutajar et al. (2017) go on to describe architectures corresponding to specific kernels.
For example, by a specific choice of kernels, ReLU activations can be recovered. We
refer the reader to their paper for further details.

1.3.1 Inference in RFF-DGP

Let Φ be the collection of all kernel parameters, W be the collection of all angular
frequencies sampled in the RFF approximations, and Θ = (Θ(1), . . . ,Θ(N)) be the
collection of all random matrices. In performing inference in the RFF-DGP approx-
imation, for each of these quantities we can either attempt to compute a posterior
distribution or simply use a point estimate; RFF-DGP specifices a prior for W and Θ,
but a prior over Φ remains to be chosen. For parameters that we choose to perform
posterior inference for, Cutajar et al. (2017) propose to use variational inference as
the approximate inference scheme, a common practice in Bayesian neural networks
(Blundell et al., 2015).

Suppose, for the purpose of illustration, that we would like to compute point estimates
for Φ and Θ, but compute an approximate posterior for W . Let Y be some data set.
The both the posterior p(W |Y,Φ,Θ) and the log marginal likelihood log p(Y |Φ,Θ)

involve intractable integrals, so they cannot be evaluated. Variational inference gets
around this by instead maximising a lower bound on the model evidence called the
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evidence lower bound (ELBO):

log p(Y |X,Φ,Θ) ≥ Eq(W )[log p(Y |X,W,Φ,Θ)]−DKL(q(W ) ‖ p(W ))

where q(W ) is an approximation of the posterior p(W |Y,Φ,Θ). We are free to select
any parametrisation we like for q(W ), with various performance trade-offs; a commmon
choice is a factorised Gaussian.

The evidence lower bound can be maximised with gradient-based optimisation. In
this case that q(W ) is a factorised Gaussian, we can compute DKL(q(W ) ‖ p(W ))

analytically and thus its gradients automatically using automatic differentiation, e.g.
with the Python libraries PyTorch or TensorFlow. However, Eq(W )[log p(Y |X,W,Φ,Θ)]

cannot be computed in closed-form. We get around this by using a Monte Carlo
approximation, sampling W ∼ q(W ). Importantly, since q(W ) contains parameters
that need to be optimised and W is sampled from q(W ), we need to be careful in
computing gradients of the Monte Carlo approximation. A common solution is to use
the reparametrisation trick (Kingma et al., 2013): we “reparametrise” samples from
q(w) = N (µ, σ2) by, instead of sampling from q(w) directly, we sample ε ∼ N (0, 1) and
then set w = σε+µ. The reparametrisation trick ensures that randomness in the Monte
Carlo approximation of the expectation is fixed when when computing gradients with
respect to the parameters of q(W ), resulting in a lower-variance, unbiased estimator of
the gradient of the ELBO.
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2 Topic 2: Kernel Design

Random Fourier Features (RFFs) alleviate the first major issue with Gaussian processes,
which is their cubic scaling in the number of data points n. RFFs do not, however,
help with the choice of kernel, a problem that we call kernel design. A kernel can be
designed by coming up with a parametrisation that encodes one’s assumptions about
the underlying function. This is not always easy, because it can be unclear how these
assumptions may be encoded into a kernel, and the kernel must be a positive-definite
function.

In this topic, we will see how Bochner’s Theorem (Theorem I.2) can be used to design
flexible kernels whose parameters may be learned from data. Bochner’s Theorem
(Theorem I.2) says that a stationary kernel is characterised by its power spectral
density (PSD), which is the distribution of power contained in frequency components
that make up the signal. The PSD needs to be nonnegative and symmetric (in the case
of a real-valued function), which are simpler requirements than positive definiteness.
Therefore, instead of attempting to flexibly parametrise a kernel directly, one could
flexibly parametrise the PSD. We will discuss a number of techniques that take this
approach.

2.1 The Spectral Mixture Kernel

We have already seen that RFFs approximate the PSD by a carefully sampled line
spectrum, which are in the Sparse Spectrum Approximation (SSA) subsequently
optimised. Assuming a line spectrum is equivalent to assuming that the signal consists
of a sum of finitely many sines, which is a strong parametric assumption. Wilson et al.
(2013) propose to fatten these lines and instead parametrise the PSD with a symmetric
Gaussian mixture:

s(ω) =
1

2

Q∑
q=1

w(q)
(
N
(
ω;µ(q),Σ(q)

)
+N

(
ω;−µ(q),Σ(q)

))
.

Then

k(SMK)(τ) =

Q∑
q=1

w(q) exp
(
−1

2
τTΣ(q)τ

)
cos
(
µ(q)Tτ

)
,
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which Wilson et al. (2013) call the Spectral Mixture Kernel (SMK). Here the weights
(w(q))Qq=1 specify the contributions of the mixture components, (µ(q))Qq=1 the frequen-
cies, and (Σ(q))Qq=1 the squared inverse length scales, which determine how quickly a
component varies with the input.

The SMK can be interpreted in terms of a generative model, which is a truncated
Fourier series with time-varying coefficients:

f (SMK)(t) =

Q∑
q=1

√
w(q)(c

(q)
1 (t) cos(µ(q)Tt) + c

(q)
2 (t) sin(µ(q)Tt))

∼ GP
(
0, k(SMK)(τ)

)
where c(q)1 , c

(q)
2 ∼ GP(0, exp(−1

2
τTΣ(q)τ)) are coefficients that vary on inverse length

scales (Σ(q))Qq=1. This shows that, compared to the SSA where (c
(q)
1 , c

(q)
2 )Qq=1 are constant,

the spectral lines are fattened to Gaussians by allowing the coefficients to vary with
time.

The SMK can be used as a flexible, drop-in replacement for popular kernels that retains
simple training and inference procedures. Even with a small number of components,
Q ≤ 10, the SMK is able to closely recover many standard kernels (Wilson et al.,
2013). Additionally, the SMK is able to express negative covariances, which is key
in modelling e.g. linear trends. Two downsides of the SMK are that (1) it is usually
not clear in advance how many components are needed and (2) the hyperparameters
(w(q), µ(q),Σ(q))Qq=1 are sensitive to initialisation and hard to optimise, leading to a
nonconvex optimisation problem with many local minima.

2.1.1 Multiple Outputs

Parra et al. (2017) extend the SMK to multiple outputs using the multivariate extension
of Bochner’s Theorem (Theorem I.2), Cramér’s Theorem (Theorem I.3). They call
their generalisation the Multi-Output Mixture Kernel (MOSMK). The construction
is analogous to the single-output case, but extra care must be taken to satisify non-
negativity of the density. The MOSMK models the PSD with a symmetrix mixture of
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outer products of Gaussian vectors:

S(ω) =
1

2

Q∑
q=1

(
R(q)(ω)R(q)†(ω) +R(q)(−ω)R(q)†(−ω)

)
,

R
(q)
i (ω) = w

(q)
i exp

(
−1

4
(ω − µ(q)

i )Σ
(q)−1
i (ω − µ(q)

i )− ι(θ(q)Ti ω + φ
(q)
i )
)

where S is now a (P×P )-matrix-valued function and · † denotes conjugate transposition
and where every component further includes time delays (θ

(q)
i )Pi=1 and phase shifts

(φ
(q)
i )Pi=1. Then

Kij(τ) =

Q∑
q=1

α
(q)
ij exp

(
−1

2
(τ + θ

(q)
ij )TΣ

(q)
ij (τ + θ

(q)
ij )
)

cos
(

(τ + θ
(q)
ij )Tµ

(q)
ij + φ

(q)
ij

)
where

α
(q)
ij = w

(q)
i w

(q)
j (2π)

d
2 |Σ(q)

ij |
1
2 exp

(
−1

4
(µ

(q)
i − µ

(q)
j )T(Σ

(q)
i + Σ

(q)
j )−1(µ

(q)
i − µ

(q)
j )
)
,

Σ
(q)
ij = 2Σ

(q)
i (Σ

(q)
i + Σ

(q)
j )−1Σ

(q)
j ,

µ
(q)
ij = (Σ

(q)
i + Σ

(q)
j )−1(Σ

(q)
i µ

(q)
j + Σ

(q)
j µ

(q)
i ),

θ
(q)
ij = θ

(q)
i − θ

(q)
j ,

φ
(q)
ij = φ

(q)
i − φ

(q)
j .

The MOSMK can also be interpreted in terms of a generative model, which is for each
output a truncated Fourier series with time-varying coefficients, also including time
delays and phase shifts:

f
(MOSMK)
i (t) =

Q∑
q=1

w
(q)
i

(
c
(q)
i1 (t− θ(q)i ) cos

(
µ
(q)T
i (t− θ(q)i ) + φ

(q)
i

)
+ c

(q)
i2 (t− θ(q)i ) sin

(
µ
(q)T
i (t− θ(q)i ) + φ

(q)
i

))
∼ GP

(
0, k(MOSMK)(τ)

)
where (c

(q)
i1 )Pi=1 and (c

(q)
i2 )Pi=1 are independent multi-output Gaussian processes with

kernels

E[c
(q)
ik (t)c

(q)
jk (t′)] =

α
(q)
ij

w
(q)
i w

(q)
j

exp
(
−1

2
(t− t′)TΣ

(q)
ij (t− t′)

)
.
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Other approaches to extending the SMK to multiple outputs involve that by Ulrich
et al. (2015) and Chen et al. (2018).

2.1.2 Nonstationary Signals

Before extending the SMK to nonstationary signals, let us first consider the simple
exponentiated-quadratic (EQ) kernel. Even extending the EQ kernel to nonstationary
signals is not straightforward: if the length scales are made input dependent, then the
resulting function is not positive definite. Gibbs (1997) demonstrates how such an
extension can instead be done, resulting in a nonstationary version of the EQ kernel
called the Gibbs kernel :

k(Gibbs)(t, t′) =
D∏
d=1

√
2`d(t)`d(t′)

`2d(t) + `2d(t
′)

exp

(
−

D∑
d=1

(td − t′d)2

`2d(t) + `2d(t
′)

)

where (`d)
D
d=1 are positive functions parametrising the length scales of the input di-

mensions. The important part of the Gibbs kernel is the prefactor of the exponential,
which may seem odd at first. It is there to ensure positive definiteness and engineered
in a way such that k(Gibbs)(t, t) = 1.

Let us detail this construction by Gibbs in one dimension. The EQ kernel can be
derived by considering basis functions φ(t; c) centred around c with length scale `,

φ(t; c) =

(√
2

π

1

`

) 1
2

exp

(
− 1

`2
(t− c)2

)
,

and summing them against a white noise process n(t) ∼ GP(0, δ(t− t′)):

f(t) |n =

∫ ∞
−∞

φ(t; c)n(c) dc.

Then, after some algebra, f ∼ GP(0, k) with

k(t, t′) =

∫ ∞
−∞

φ(t; c)φ(t′; c) dc = exp

(
− 1

2`2
(t− t′)2

)
,

which is the EQ kernel. Gibbs proposes to make the length scales of the basis functions
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dependent on t—not c, because then the integration would become intractable:

φ(t; c) =

(√
2

π

1

`(t)

) 1
2

exp

(
− 1

`2(t)
(t− c)2

)
.

Then

k(t, t′) =

∫ ∞
−∞

φ(t; c)φ(t′; c) dc =

√
2`(t)`(t′)

`2(t) + `2(t′)
exp

(
− (t− t′)2

`2(t) + `2(t′)

)
,

which is the Gibbs kernel in one dimension.

Based on the Gibbs kernel, Remes et al. (2017) propose a nonstationary generalisation
of the SMK, named the Generalised Spectral Mixture Kernel (GSMK):

k(GSMK)(t, t′) =

Q∑
q=1

w(q)(t)w(q)(t′)k(Gibbs)
q (t, t′) cos

(
µ(q)T(t)t− µ(q)T(t′)t′

)
,

where (w(q))Qq=1 and (µ(q))Qq=1 are positive functions parametrising respectively the
weights and frequencies of the components. The unknown functions (w(q), `(q)µ(q))Qq=1

are given a log-Gaussian process prior and learned with maximum a posteriori (MAP)
estimation.

This generalisation can also be interpreted in terms of a generative model:

f (GSMK)(t) =

Q∑
i=1

w(q)(t)
(
c
(q)
1 (t) cos(µ(q)T(t)t) + c

(q)
2 (t) sin(µ(q)T(t)t)

)
∼ GP

(
0, k(GSMK)(τ)

)
where c

(q)
1 , c

(q)
2 ∼ GP(0, k

(Gibbs)
q ) are coefficients that vary on time-varying length

scales.

2.2 The Gaussian Process Convolution Model

The SMK and its extensions assume a parametric model for the PSD. A more flexible
alternative is to model the PSD nonparametrically, for example by letting

s(ω) = |ĥ(ω)|2
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Figure 4: Prior over kernels and power spectral densities (PSDs) induced by the Gaussian
Process Convolution Model (GPCM). Lines correspond to means and gradients indicate
marginal variance. Figure taken from Bruinsma (2016).

where ĥ : Rd → C is a symmetric unknown function. Then the inverse Fourier transform
h of ĥ is a real-valued function on Rd and, by the Convolution Theorem,

k(t, t′) =

∫ ∞
−∞

h(t− z)h(t′ − z) dz = h ∗Rh(t− t′)

where R is the reversal operator: Rh(t) = h(−t). By interpreting k as an infinite-
dimensional matrix, k can be seen as an infinite sum of outer products, which is
positive definite. Alternatively, interpret convolution as “multiplication for functions”
and reversal as “transposition for functions”. Then, roughly, k = hhT; compare this to
AAT, which is a positive-definite matrix for any matrix A.

Tobar et al. (2015) propose to model h also with a Gaussian process, h ∼ GP(0, kh),
resulting in a model called the Gaussian Process Convolution Model (GPCM). Care
must be taken in choosing h: for the variance of the modelled signal to be finite, h
must be square integrable in expectation; that is,∫ ∞

−∞
kh(t, t) dt <∞,

which can be interpreted as the requirement that kh must have a finite trace. The
GPCM induces a nonparametric prior distribution over PSDs, or equivalently over
kernels; this prior is visualised in Figure 4.
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The GPCM admits an equivalent interpretation in terms of linear systems. Since
s(ω) = 1 · |ĥ(ω)|2 and white noise has a constant PSD of 1, the GPCM is equivalent to
passing white noise through a linear system with impulse response h, where the impulse
response h is modelled nonparametrically with another Gaussian process.

2.3 Conclusion

Instead of designing a flexible kernel directly, one can design the PSD, whose require-
ments are simpler than that of the kernel. Parametric approaches parametrise the
PSD with a line spectrum or a Gaussian mixture, but other choices are possible. One
can even use a nonparametric model for the PSD, but then inference becomes more
involved.
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APPROXIMATE  INFERENCE  IN EXACT MODEL-

-

Figure 5: Exact inference in an approximate model versus approximate inference in
an exact model. If you change your model prior, this might affect your posterior in
unforeseen or undesired ways. A line from the space of priors to the space of posteriors
represents an application of Bayes’ rule. Dashed lines represent approximations.

3 Topic 3: Variational Inference

Random Fourier Features (RFFs) scale Gaussian processes to large numbers of data
points N by approximating the kernel, thus forming an approximate model, and
performing exact inference in this approximate model. But performing exact inference
in an approximate model is a dangerous thing to do, because changing your assumptions
(i.e. approximating your model) can affect your posterior in unforeseen or undesired
ways (Figure 5). An approximation of the model also often introduces more parameters
which need to be optimised. This comes with the risk of overfitting, as we have
observed in the Sparse Spectrum Approximation (SSA). Intead, one should perform
approximate inference in the exact model. There the approximation may be optimised
as much as you like, without any risk of overfitting: you will only get closer to the true
answer.

In this topic, we consider a second technique to scale Gaussian processes, one that
aims to approximate the exact model. We will see how this second technique can be
combined with RFFs to get the best of both worlds.
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3.1 Inducing Points

The story told next is accompanied by the cartoon depicted in Figure 6.

A straightforward way to scale Gaussian processes to large data sets is to only use a
subset of M � N data points, e.g. chosen by random sampling (Figures 6a and 6b).
This is obviously very wasteful, but it may suffice if the predictions are accurate enough.
Instead of random sampling, we can be a little bit more clever and carefully choose
these M data points. For example, if the data were to consist of clusters, we could
choose one representative of every cluster (Figure 6c). More generally, the subset of M
data points could be chosen such that they summarise nearby data points. And these
M data points do not have to be actual observations. Perhaps we can cleverly make up
pseudo-observations that best summarise nearby actual data points (Figure 6d).

Pseudo-observations that summarise nearby actual data points is still not an entirely
satisfactory solution, because the model will not be aware that its pseudo-observations
are not actual observations. Instead, it will think that we actually observed these
pseudo-observations. Therefore, if you ask it to predict at the location of a pseudo-
observation, it will confidently predict you the value of that pseudo-observation, which
might be far from what is actually observed (Figure 6e).

What goes wrong is that reducing multiple data points to a single one comes with a
loss of uncertainty. If the data points summarised by a pseudo-observation have similar
values, then the we can be fairly certain that the value of the pseudo-observation is
close to what is actually observed. But if the summarised data points have different
values, then we should be uncertain about the value of that pseudo-observation.

To turn the concept of pseudo-observations into a satisfactory solution, we explicitly
represent this uncertainty. We do not let a pseudo-observation have a single value y,
but instead assume a distribution over y (Figure 6f). This distribution represents the
distribution of values of nearby data points that it the pseudo-observation summarises.
Thus, the pseudo-observations are now stochastic. Stochastic pseudo-observations are
better known as inducing points in the Gaussian process literature.3 The effect of
assuming a distribution over the values of the pseudo-observations is visualised in
Figures 6g and 6h: a corrective variance arsises, which is added to the predictive

3 The term “pseudo-observations” and the distinction between pseudo-observations and inducing
points are not conventional; they are introduced here just to explain the concepts.
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(a) Consider some random data set. (b) We could consider a random subset,
but that is very wasteful.

(c) We could also choose the subset a bit
more clever, for example by clustering.

(d) Best is to introduce carefully con-
structed pseudo-observations.

(e) The prediction looks overconfident, be-
cause pseudo-observations are considered
actual observations.

(f) Introduce a distribution for each pseudo-
observation. Now we have inducing points.

(g) This gives rise to a corrective variance that
should appropriately inflate the prediction.

(h) When summed together, the prediction
looks much more reasonable!

Figure 6: Cartoon that accompanies the story told in Section 3.1.
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distribution resulting from the pseudo-observations to appropriately inflate the variance
and capture most of the data. We now proceed to formalise the notions of pseudo-
observations and inducing points.

Let f ∼ GP(0, k) and let D be some data set of size N . The posterior of interest is
p(f | D), but computing p(f | D) directly may be too expensive. The simplest solution
is to simply use a subset of the data, corresponding to the approximation p(f | D) ≈
p(f | Dsubset). But, as we already argued, we can do better. Introduce M � N pseudo-
observations u at input locations (tu,1, . . . , tu,M ): u = (f(tu,1), . . . , f(tu,M )). Then, given
carefully chosen values for the pseudo-observations u, we could approximate p(f | D) ≈
p(f |u). This, however, fails to take into account that the pseudo-observations are
not actual observations. Therefore, turning u into inducing points, instead assume
a carefully chosen distribution q(u). This gives rise to the famous inducing point
approximation of Gaussian processes originally proposed by Titsias (2009), a major
milestone in the literature of Gaussian process approximations:

p(f | D) ≈
∫
p(f |u)q(u) du ≡ q(f),

where q(f) denotes the approximate posterior for f . Titsias (2009) proposes to
choose q(u) by minimising the Kullback–Leibler (KL) divergence between q(f) and
p(f | D):

q∗(u) = arg min
q(u)

DKL(q(f) ‖ p(f | D)),

where

DKL(q(x) ‖ p(x)) ≡
∫
q(x) log

q(x)

p(x)
dx.

That is, the approximate posterior is chosen such that it best approximates the exact
posterior, as promised in the introduction. This means that we cannot overfit due to
having too many inducing points: more inducing points will only get us closer to the
true posterior. The procedure of minimising the KL divergence between an approximate
posterior and the true posterior is called variational inference.
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A simple exercise in the calculus of variations shows that

q∗(u) ∝ p(u) exp

∫
p(f |u) log p(D | f) df.

Substituting q∗(u) back into the expression for q(f) then yields that q(f) = GP(mq, kq)

where

mq(t) = k(t, tu)(σ
2Kuu +KufKfu)

−1K−1u Kufy,

kq(t, t
′) = k(t, t′)− k(t, tTu )K−1uu k(tu, t

′)︸ ︷︷ ︸
posterior variance of pseudo-observations

+ k(t, tTu )(Kuu + σ−2KufKfu)
−1k(tu, t

′)︸ ︷︷ ︸
corrective variance

,

where (Kuu)ij = k(tu,i, tu,j), (Kuf)ij = k(tu,i, tj), y are the actual observations, and
σ2 is the observation noise. Observe that the approximate posterior variance can be
decomposed into a sum of (1) the posterior variance that arises from non-stochastic
pseudo-observations and (2) a corrective term deriving from that the inducing points
summarise multiple observations; it is this decomposition that is shown in Figures 6g
and 6h. The approximate posterior q(f) can be computed in O(NM2) time, which is a
significant saving compared to the O(N3) time required to compute p(f | D) directly.
One should verify that if an inducing point is placed at every observed data point, then
the approximation becomes exact.

The inducing point approximation for Gaussian processes has been put on a rigorous
grounding by G. Matthews et al. (2015) and enjoys great empirical performance (T. D.
Bui et al., 2016a).

3.2 Variational Fourier Features

Inducing points for Gaussian processes can be thought of as a spatially local summarisa-
tion of the data. This means that inducing points need to cover the input space where
the data lives and where we wish to make predictions. For a time series, regularly
spaced inducing points are known to work well (Thang D. Bui et al., 2014). This
reveals a deficiency of the inducing points method: as N grows and the time series
becomes longer, more inducing points are needed as well; that is, M = CN where the
constant C may be small. The inducing points approximation therefore effectively still
scales cubically, O(NM2) = C2O(N3), but with a much improved constant. For very
large time series, this can be problematic.
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This issue is less severe for the Sparse Spectrum Approximation (SSA), because its
predictive features are sines and cosines. Instead of contributing to the prediction only
locally near an inducing point, these sines and cosines contribute to the prediction
everywhere. Whereas inducing points summarise the data spatially locally, the SSA is
spectrally local approximation of the Gaussian process.

But the SSA suffers from another issue, one that is also problematic: overfitting. This
is no issue for inducing points: more inducing points will only get you closer to the
desired posterior. Is it possible to combine the appealing approximative construction of
the inducing points method with the representative power of Random Fourier Features
(RFFs) that the SSA uses, to get rid of the hidden O(N3) scaling and to enable us to
use as many frequency components as we want without running the risk of overfitting?
A method called Variational Fourier Features (VFFs) (Hensman et al., 2016) aims to
do exactly this.

The posterior predictive mean of the inducing point method is of the form

f̂ (IP)(t) =
M∑
i=1

αik(t, tu,i),

whereas that of the SSA is of the form of a truncated Fourier series:

f̂ (SSA)(t) =
M∑
i=1

αi cos(2πξit) +
M∑
i=1

βi sin(2πξit).

VFFs is a modification of the inducing point method, done in clever way such that the
posterior predictive mean f̂ (VFF)(t) is also of the form of a truncated Fourier series,
thereby obtaining the representative power that RFFs show. A key ingredient in the
construction is an extension of the inducing point method called inter-domain inducing
points (Gredilla et al., 2009), which we will outline first.

Instead of introducing pseudo-observations for the underlying function f , we could
first linearly transform f with linear transform h called an inter-domain transforma-
tion,

g(ξ) | f =

∫ ∞
−∞

h(ξ, τ)f(τ) dτ,

and introduce pseudo-observations for g instead. In some cases, this construction is
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Figure 7: Predictive features from L2[a, b]-VFFs (left) and VFFs derived from the
RKHS construction (right) for several choices of the kernel k. Figure taken from
Hensman et al. (2016).

necessary: If a priori f is assumed to be white noise, then pseudo-observations of f
are unable to induce a posterior over f , because white noise is uncorrelated. But,
if h(ξ, τ) is a Gaussian bump centred at ξ, then a pseudo-observation of g(ξ) will
correlate with f(t) for all t near ξ, thus inducing a nontrivial posterior. In other cases,
the inter-domain transformation may improve the approximate posterior: h can be
designed to filter out irrelevant features of f and emphasise important ones. Inducing
points for g are called inter-domain inducing points, because g “lives in a different
domain” than f .

The posterior predictive mean of the inter-domain inducing point method is of the
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form

f̂ (IDIP)(t) =
M∑
i=1

αi

∫ ∞
−∞

k(t, τ)h(ξu,i, τ) dτ,

where the inducing points for g are at ξu = (ξu,1, . . . , ξu,M). The construction of
VFFs is to engineer h in such a way that f̂ (IDIP) also becomes a Fourier expansion.
An honourable first attempt is to let h(ξ, τ) = e−2πιξτ . Then g becomes the Fourier
transform of f , so the inducing points become inducing frequencies. If k is a stationary
kernel with Fourier transform k̂, then

f̂ (IDIP)(t) =
M∑
i=1

αik̂(ξu,i)e
−2πιξu,it.

It appears that we have our desired result! Unfortunately not, because g turns out to
be white noise with infinite variance for which inducing points do not work. To fix this,
one could apply yet another inter-domain transform. By the Convolution Theorem,
this is equivalent to applying a window to f before Fourier transforming. L2[a, b]-VFFs
choose a rectangular window on [a, b], which learns f on only the finite interval [a, b]

instead of all of R:

g(ξ) | f =

∫ b

a

f(t)e−2πιξ(t−a) dt

where ξ should be harmonic on [a, b]. This works, sort of. The posterior predictive
mean f̂ (IDIP)(t) is close to a Fourier sum for t far from the edges of [a, b], but near the
edges there is undesirable behaviour; this is illustrated in Figure 7.

Like L2[a, b]-VFFs, VFFs also approximate the function on only a compact interval
[a, b], but do so without introducing edge effects. Their construction utilises the theory
of reproducing kernel Hilbert spaces (RKHS). Since we consider a compact interval
[a, b], if we endow this interval with a finite measure µ, then Mercer’s Theorem states
that k can be written as

k(t, t′) =
∞∑
i=1

λiφi(t)φ
∗
i (t
′)

where (λi)
∞
i=1 are absolutely summable positive eigenvalues and (φi)

∞
i=1 orthonormal

Page 31 of 43



Spectral Methods in Gaussian Modelling James Requeima and Wessel Bruinsma

eigenfunctions of the integral operator

Tkf = t 7→ 〈k(t, · ), f〉, 〈f, g〉 =

∫ b

a

f(t)g∗(t) dµ(t).

What does this get us? Well, if the inter-domain transform instead integrates against
µ, then

f̂ (IDIP)(t) =
M∑
i=1

αi

∫ b

a

k(t, τ)h(ξu,i, τ) dµ(τ)

=
M∑
i=1

αi〈k(t, · ), h(ξu,i, · )〉

=
M∑
i=1

αiTk(h(ξu,i, · ))(t).

That is, we wish to find an h such Tk(h(ξ, · ))(t) = ψ(ξ, t) = e−2πιξt. And we know
which functions pass through Tk unharmed: it’s eigenfunctions! Therefore, suppose
that ψ(ξ, · ) ∈ span {φi}∞i=1. Then

ψ(ξ, · ) =
∞∑
i=1

φi(t)〈ψ(ξ, · ), φi〉,

so a good candidate is

h(ξ, t) =
∞∑
i=1

1

λi
φi(t)〈ψ(ξ, · ), φi〉.

Indeed,

Tk(h(ξ, · ))(t) =
∞∑
i=1

1

λi
Tk(φi)(t)〈ψ(ξ, · ), φi〉

=
∞∑
i=1

φi(t)〈ψ(ξ, · ), φi〉

= ψ(ξ, t) = e−2πιξt,

so we have found an inter-domain transform h that achieves the desired Fourier features,
at last. Hensman et al. (2016) show that this construction works for the family of Matérn
kernels of half-integer order (Rasmussen et al., 2006), and that all computations are
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tractable. The resulting inter-domain inducing point method is called VFFs (or RKHS-
VFFs). Figure 7 illustrates the predictive features obtain through this construction;
note that, within [a, b], the predictive features are exactly sinusoidal.

VFFs demonstrate good performance both in terms of computational speed and predic-
tive power. See the original paper by Hensman et al. (2016) for details.

3.3 Rates of Convergence

Although VFFs demonstrate improved performance compared to RFFs, their perfor-
mance gain comes at the cost of a much more complex construction. The simplicity of
RFFs is one of its benefits, which, as we saw in Topic 2, makes it amenable to conver-
gence analysis. For VFFs and inducing point methods in general, the question of how
many inducing points are needed is a more complicated one to answer. Recently, Burt
et al. (2018) showed that for a particular inter-domain method that uses eigenfunction
inducing features, under certain conditions M ∝ logN many inducing points suffice,
thus achieving a significant asymptotic gain.

Use Mercer’s Theorem to decompose

k(t, t′) =
∞∑
i=1

λiφi(t)φ
∗
i (t
′).

Then the eigenfunction inducing features (ui)
∞
i=1 are given by

ui | f =
1√
λi

∫
f(t)φi(t) dµ(t).

These eigenfunction inducing features behave very nicely, which is what makes them
attractive to use:

E[uiuj] = 1 if i = j else 0, E[f(ti)uj] =
√
λjφj(ti).

The main result of Burt et al. (2018) is the following:

Theorem 3.1. Fix ε > 0 and δ > 0. Let (ti)
∞
i=1 be sampled i.i.d. from N (0, α), let

k be an exponentiated-quadratic kernel, and let µ have density N (0, β) with β > 2α.
Then there are Ñ and C̃ such that, for all N > Ñ , the inter-domain point method with
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M = C̃ logN eigenfunction inducing features achieves

DKL(q(f) ‖ p(f | D)) ≤ ε

with probability at least 1− δ. J

Sketch of Proof. The key ingredient is the inequality

DKL(q(f) ‖ p(f | D)) ≤ c

2σ2

(
1 +

‖y‖2

σ2 + c

)
,

where y are the observed values, σ2 is the observation noise, and

c = tr (Kyy −KyuK
−1
uuKuy),

where (Kff)ij = E[f(ti)f(tj)], (Kfu)ij = E[f(ti)uj], and (Kuu)ij = E[uiuj]. Therefore,
assuming that ‖y‖2 = O(N), we need to scale M with N such that c = O(N−1). A
calculation (try it!) shows that

1

N
c =

∞∑
m=M+1

λm

[
1

N

N∑
i=1

φ2
m(ti)

]
.

Using Chebychev’s Inequality to upper bound the quantity between square brackets
with high probability4, we find that M ∝ logN suffices since, for the EQ kernel,∑∞

m=M+1 λm = O(AM) for some A ∈ (0, 1).

3.4 Conclusion

Whereas RFFs approximate the kernel and perform exact inference in this approximate
model, the inducing point approximation for Gaussian processes attempts to bring an
approximate posterior close to the true posterior. This eliminates the risk of overfitting
otherwise present in the SSA. VFFs is a particular inter-domain inducing point method
designed to combine the benefits of inducing points with the representative power of
RFFs, where key in the design of the inter-domain transform are tools from RKHS
theory. Moreover, those tools can be used to design inter-domain inducing point
methods that are amenable to convergence analysis.

4 For simplicity, we ignore the dependency of φm on m; see the original paper for details.
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4 Topic 4: Spectrum Estimation

The power spectral density (PSD) is of interest in a wide range of disciplines, like
natural sound processing, statistical physics, astrophysics, biomedical engineering,
materials science, and telecommunications, among others. Typically only a limited
number of noisy observations of the underlying signal are available, often sampled at
irregularly spaced points in time; the main challenge in spectrum estimation (SE) is
designing estimators of the PSD that deal with these issues.

Estimators can roughly be categorised as (1) parametric methods that assume a
parametric form for the underlying signal, resulting in a parametric estimate of the
PSD, or (2) nonparametric methods that do not assume any particular structure, like
the squared modulus of the discrete Fourier transform (DFT). We have already seen
examples of both categories: the Sparse Spectrum Approximation (SSA) assumes a
line spectrum and the Spectral Mixture Kernel (SMK) assumes a Gaussian mixture,
whereas the Gaussian Process Convolution Model (GPCM) assumes of nonparametric
prior over the PSD through a cleverly transformed Gaussian process.

Tobar (2018) recently introduced a method for SE called Bayesian Nonparametric
Spectral Estimation (BNSE). BNSE is a Gaussian-process-based model that properly
accounts for uncertainty deriving from having only finitely many observations, handles
noise and irregularly spaced observations, and is able to exploit structure in the
underlying signal, all whilst retaining a closed-form inference. This model will be our
final topic.

4.1 Bayesian Nonparametric Spectral Estimation

A first take on a Gaussian-process-based model for SE might be the following: Suppose
that our underlying signal is generated by a GP: f ∼ GP(0, k). Then the PSD
is given by s(ξ) | f = |f̂(ξ)|2 where f̂ denotes the Fourier transform of f . Thus,
given noisy observations e = (y(t1), . . . , y(tn)) of f where y is a noisy version of
f , we could estimate the PSD with a conditional expectation: ŝ(ξ) = E[s(ξ) | e].
Unfortunately, for k stationary, as often is the case, this does not work: samples from
f are then not integrable almost surely, meaning that the Fourier transform of f̂ does
not converge.

Instead, we consider the spectrum of a windowed version of f : fw(t) | f = f(t)w(t)
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where w is the window. Then samples of fw are almost surely integrable, so the
Fourier transform f̂w of f̂ almost surely exists. The spectrum f̂w of fw is called a
local spectrum of f . Use of window functions is common in SE; they can arise as a
consequence of acquisition devices or may be used for algorithmic purposes, like here
(Tobar, 2018).

The posterior over the PSD of the windowed version of f is the estimator proposed by
Tobar (2018). The posterior mean gives a point estimate:

ŝw(ξ) = E[sw(ξ) | e].

To compute this expectation, note that

ŝw(ξ) = E[|f̂w(ξ)|2 | e]

= E[(Re f̂w(ξ))2 | e] + E[(Im f̂w(ξ))2 | e]

=
(
V[Re f̂w(ξ) | e] + E2[Re f̂w(ξ) | e]

)
+
(
V[Im f̂w(ξ) | e] + E2[Im f̂w(ξ) | e]

)
,

where the posterior moments of the real and imaginary part of f̂w follow from the
usual conditioning formulas for Gaussian processes if the covariance functions of Re f̂w

and Im f̂w and their cross-covariances with the observations can be computed. We let
w(t) = e−απ

2t2 and choose k to be a Spectral Mixture Kernel (SMK), or in simple cases
an exponentiated-quadratic (EQ) kernel. The choice of window facilitates tractability
of the calculation of the posterior moments.

4.2 Posterior Moments of f̂w

The covariance functions of Re f̂w and Im f̂w and their cross-covariances with the
observations can be derived from that of f̂w:

kRe f̂w
(ξ, ξ′) =

1

2
(kf̂w(ξ, ξ′) + kf̂w(ξ,−ξ′)), ky(Re f̂w)

(t, ξ) = Re kyf̂w(t, ξ),

kIm f̂w
(ξ, ξ′) =

1

2
(kf̂w(ξ, ξ′)− kf̂w(ξ,−ξ′)), ky(Im f̂w)

(t, ξ) = Im kyf̂w(t, ξ),

where

kf̂w(ξ, ξ′) = E[f̂ ∗w(ξ)f̂w(ξ′)], kyf̂w(t, ξ) = E[y∗(t)f̂w(ξ)],
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which we will compute now. Let F{f}(ξ) denote the Fourier transform of an integrable
function f :

F{f}(ξ) ≡
∫ ∞
−∞

f(t)e−2πιξ
Tt dt,

where we may explicitly denote dependence on the variable t: F{f}(ξ) = Ft{f(t)}(ξ).
The main ingredient of the calculation is the Convolution Theorem:

kf̂w(ξ, ξ′) = E[f̂ ∗w(ξ)f̂w(ξ′)]

= E[Ft,t′{f(t)f(t′)w(t)w(t′)}(−ξ, ξ′)]

= (Ft,t′{k(t− t′)}(u, u′) ∗ Ft,t′{w(t)w(t′)}(u, u′))(−ξ, ξ′),

= (k̂(u)δ(u+ u′) ∗ r̂w(u, u′))(−ξ, ξ′),

where u and u′ denote the variables of integration in the convolution, and where k̂ is
the Fourier transform of k and r̂w the Fourier transform of (t, t′) 7→ w(t)w(t′). The
function r̂w admits a nice closed form:

r̂w(ξ + u, ξ′ + u) = N (ξ − ξ′; 0, α)N
(
u; 1

2
(ξ + ξ′), 1

4
α
)
.

Then, writing the convolution as an integral,

kf̂w(ξ, ξ′) =

∫
k̂(u)δ(u+ u′)r̂w(−ξ − u, ξ′ − u′) du du′

=

∫
k̂(u)r̂w(ξ + u, ξ′ + u) du

= N (ξ − ξ′; 0, α)
(
k̂(u) ∗ N

(
u; 0, 1

4
α
))(

1
2
(ξ + ξ′)

)
.

The cross-covariance between f̂w and y admits a similar calculation:

kyf̂w(t, ξ) = E[y∗(t)Ft′{f(t′)w(t′)}(ξ)]

= Ft′{k(t− t′)w(t′)}(ξ)

= (k̂(u)e−2πιut ∗ F{w}(u))(ξ)

=
(
k̂(u)e−2πιut ∗ N

(
u; 0, 1

2
α
))

(ξ).

For kernels k other than the EQ kernel, convolution of k̂ with a normal density might
be intractable. In those cases, for small α, we may approximate these normal densities
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by a Dirac delta, so the convolutions simplify:

kf̂w(ξ, ξ′) ≈ N (ξ − ξ′; 0, α)k̂
(
1
2
(ξ + ξ′)

)
, kyf̂w(t, ξ) ≈ k̂(ξ)e−2πιξt.

4.3 Connection with the Discrete Fourier Transform

The posterior mean of the local spectrum is given by

E[f̂w(ξ) | e] =

∫
k̂(u)

(
N∑
i=1

e−2πιuti(K−1e e)i

)
N
(
u; ξ, 1

2
α
)

du

where (Ke)ij = ky(ti, tj). This can be interpreted as the discrete Fourier transform
(DFT) of a whitened version of the observations, weighted by the PSD of f , which
constitutes our prior knowledge, and finally smoothed due to windowing effects. If the
prior is largely uninformative, Ke ≈ I, then, as the window becomes infinitely wide,
we recover a weighted DFT:

lim
α→0

E[f̂w(ξ) | e] ≈ k̂(ξ)
N∑
i=1

e−2πιξtiei

4.4 Comparison to the Lomb–Scargle Method

A related classical method for SE with irregularly sampled observations is the Lomb–
Scargle (LS) method. To estimate the power at a frequency ξ, LS uses an empirical
estimate of the power of the sum of a sine and cosine with frequency f fit to the data
using least squares:

s(ξ) =
A2

N

n∑
i=1

sin2(2πξti − φ) +
B2

N

n∑
i=1

cos2(2πξti − φ),

(A,B) = arg min
A′,B′

N∑
i=1

(y(ti)− A′ sin(2πξti − φ)−B′ cos(2πξti − φ))2

where the phase shift φ is chosen such that the sine and cosine evaluated at the data
are mutually orthogonal. LS differs from BNSE in the following aspects: (1) BNSE
assumes a probabilistic model for the data, which can encode prior knowledge and
allows the spectrum to be stochastic. On the other hand, LS assumes a particular
parametric model learned using least squares, which does not encode prior knowledge
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and only generates a point estimate of the spectrum. (2) BNSE only has to do inference
once, after which the spectrum can be estimated at any frequency, whereas LS needs
to be retrained for new frequencies.

Probabilistically speaking, LS assumes that the underlying signal is a sum of sines and
cosines fit with maximum likelihood, assuming i.d.d. Gaussian noise on the observed
values. If one instead assumes a Gaussian prior over A(ξ) and B(ξ), then Tobar (2018)
shows that in the limit a Gaussian process with a Spectral Mixture Kernel (SMK) can
be recovered, thus recovering the generative model of BNSE.

4.5 Conclusion

Bayesian Nonparametric Spectral Estimation (BNSE) is a novel model for SE where,
instead of a parametric model, a Gaussian process prior over the underlying signal is
assumed. This way, due to the Bayesian nature of the model, uncertainty deriving from
noise and having only finitely many observations is handled automatically. A unique
advantage of BNSE is that the estimate of the PSD is a closed-form function, meaning
that it can be efficiently optimised to find periodicities.
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