
Convolutional Conditional
Neural Processes

Wessel Pieter Bruinsma

Department of Engineering

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Christ’s College 15 July 2022

Declaration

I hereby declare that, except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text. This dissertation contains fewer
than 65,000 words including appendices, bibliography, footnotes, tables, and equations and
has fewer than 150 figures.

Wessel Pieter Bruinsma
15 July 2022

ii

Convolutional Conditional
Neural Processes

Neural processes are a family of models which use neural networks to directly parametrise
a map from data sets to predictions. Directly parametrising this map enables the use of ex-
pressive neural networks in small-data problems where neural networks would traditionally
overfit. Neural processes can produce well-calibrated uncertainties, effectively deal with
missing data, and are simple to train. These properties make this family of models appealing
for a breadth of applications areas, such as healthcare or environmental sciences.

This thesis advances neural processes in three ways.

First, we propose convolutional neural processes (ConvNPs). ConvNPs improve data efficiency
of neural processes by building in a symmetry called translation equivariance. ConvNPs
rely on convolutional neural networks rather than multi-layer perceptrons.

Second, we propose Gaussian neural processes (GNPs). GNPs directly parametrise dependen-
cies in the predictions of a neural process. Current approaches to modelling dependencies
in the predictions depend on a latent variable, which consequently requires approximate
inference, undermining the simplicity of the approach.

Third, we propose autoregressive conditional neural processes (AR CNPs). AR CNPs train a
neural process without any modifications to the model or training procedure and, at test
time, roll out the model in an autoregressive fashion. AR CNPs equip the neural process
framework with a new knob where modelling complexity and computational expense at
training time can be traded for computational expense at test time.

In addition to methodological advancements, this thesis also proposes a software abstraction
that enables a compositional approach to implementing neural processes. This approach
allows the user to rapidly explore the space of neural process models by putting together
elementary building blocks in different ways.

Wessel Pieter Bruinsma

iii

Acknowledgements

First and foremost, I must thank my supervisor Rich. Rich, you are one of the sharpest,
most able, and most knowledgeable persons I know. It has been a privilege to pursue a PhD
under your supervision.

I have only reached the end smiling because great friends make Cambridge feel like home.
Eric and Coz, thank you for your friendship and innumerable great times. Our nights in
’90s will be remembered. Will and Joel, I really value hanging out together. Together with
Phil, the legacy of 308 lives on.

My time in Cambridge has been incredibly inspiring. Andrew, David, James, Stratis, Jiří,
Jonathan, Anna, and Tom, I thoroughly enjoyed working together. Thank you for many
insightful discussions. I have learned a great amount from every one of you. I thank
Invenia for the support throughout the years, and all Invenians for interesting and fruitful
discussions.

Back home, I also enjoyed the support of great friends. Pep en Oscar, thank you for countless
many good nights. May there be many more to come. Adt fundum! Bram, Yann, and Mike,
thank you for your long-standing friendships. Peter en Manouk, our new buurtjes, I look
forward to spending more time together.

Coming home after having been away has always been a source of comfort. Pap, mam, and
Merel, thank you for everything. Opa, you would have loved to see this thesis. I hope this
thesis makes you proud.

Finally, Liesje, my dearest, thank you for your love and endless support.

iv

Contents

Declaration ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

List of Mathematical Statements x

List of Models xiii

Notation xiv

Abbreviations xix

1 Introduction 1
1.1 From Supervised Learning to Meta-Learning 1
1.2 Learning to Learn . 3
1.3 Main Contribution . 6
1.4 Historical Context and Positioning . 7
1.5 Outline of Thesis . 8
1.6 List of Publications and Software . 10

2 Neural Processes 14
2.1 Prediction Maps . 14
2.2 Neural Processes . 17
2.3 More on Consistency . 20
2.4 The Anatomy of a Neural Process . 22
2.5 Translation Equivariance . 23
2.6 Summary and Outlook . 26

v

3 Prediction Map Approximation 27
3.1 Introduction . 27
3.2 Technical Preliminaries . 32
3.3 The Neural Process Objective . 35
3.4 Neural Process Approximations . 37
3.5 Consistency . 42
3.6 Conclusion . 47

4 Representation Theorems 50
4.1 Introduction . 50
4.2 Functions on Data Sets . 51
4.3 Deep Sets . 53
4.4 Convolutional Deep Sets . 55
4.5 Diagonal Translation Equivariance . 59
4.6 Conclusion . 63

5 Convolutional Neural Processes 65
5.1 Introduction . 65
5.2 Conditional Neural Processes . 66
5.3 Convolutional Conditional Neural Processes 67
5.4 Translation Equivariance and Generalisation 71
5.5 Gaussian Neural Processes . 74
5.6 Autoregressive Conditional Neural Processes 80
5.7 Conclusion . 86

6 Convolutional Neural Processes in Practice 89
6.1 Introduction . 90
6.2 Synthetic Experiments . 92
6.3 Sim-to-Real Transfer with the Lotka–Volterra Equations 115
6.4 Electroencephalography Experiments . 120
6.5 Climate Downscaling . 123
6.6 Conclusion . 131

7 A Software Framework for Composing Neural Processes 135
7.1 Introduction . 135
7.2 Model Design . 136
7.3 Functions as Intermediate Representations 137
7.4 Coders . 139
7.5 Building Existing and New Models . 140

vi

7.6 Conclusion . 143

8 Conclusion 145
8.1 New Tools in the Neural Process Toolbox 145
8.2 Advice for the Neural Process Practitioner 146

Bibliography 148

A Proofs for Chapter 3 165
A.1 Proofs for Section 3.1 . 165
A.2 Proofs for Section 3.3 . 166
A.3 Proofs for Section 3.4 . 168
A.4 Proofs for Section 3.5 . 171

B Proofs for Chapter 4 179
B.1 Proofs for Section 4.2 . 179
B.2 Proofs for Section 4.4 . 181
B.3 Proofs for Section 4.5 . 186

C Proofs for Chapter 5 188
C.1 Proofs for Section 5.3 . 188
C.2 Proofs for Section 5.4 . 189
C.3 Proofs for Section 5.5 . 191
C.4 Proofs for Section 5.6 . 191

D Behind the Scenes of the ConvCNP 193
D.1 Introduction . 193
D.2 Construction of a Convolutional Deep Set 194
D.3 Conclusion . 195

E Experimental Details 197
E.1 Description of Models . 197
E.2 Training, Cross-Validation, and Evaluation Protocols 200
E.3 Synthetic Experiments . 201
E.4 Sim-to-Real Transfer with the Lotka–Volterra Equations 201
E.5 Electroencephalography Experiments . 201
E.6 Climate Downscaling . 202

Index 204

vii

List of Figures

2.1 Commutative diagram illustrating translation equivariance 24
2.2 Comparison of a CNP and ConvCNP . 25

3.1 Connection between the post. pred. map and neural process approximations 38

5.1 Translation equivariance can help generalisation 72
5.2 Comparison of samples from a CNP and ConvCNP 74
5.3 Comparison of noiseless and noisy samples from GNPs 79
5.4 Noiseless and noisy samples from the AR ConvCNP 85

6.1 Samples from the sawtooth data process 93
6.2 Predictions by CNPs in the Gaussian synthetic experiments 110
6.3 Predictions by LNPs and GNPs in the Gaussian synthetic experiments . . 111
6.4 Predictions by the best-performing models in the sawtooth synthetic exp. 112
6.5 Multi-modality of predictions by the AR ConvCNP 113
6.6 Hare–lynx data set and proposed stochastic simulator 116
6.7 Predictions by the best performing models in the predator–prey experiment 120
6.8 Example of trial in the EEG data set . 121
6.9 Predictions by the best performing models in the EEG experiment 123
6.10 Locations of weather stations in climate downscaling and fusion experiments 125
6.11 Prediction by the MLP ConvGNP in the Germany downscaling experiment 128
6.12 Multiscale architecture for the AR ConvCNP 129

viii

List of Tables

1.1 Comparison of supervised learning and meta-learning 5

4.1 Comparison of deep sets and convolutional deep sets 63

5.1 Overview of the construction of all models in Chapter 5 80
5.2 Comparison of various classes of neural processes 86

6.1 Overview of all neural process models evaluated in experiments 91
6.2 Summary of results for the Gaussian synthetic experiments 96
6.3 Summary of results for the non-Gaussian synthetic experiments 97
6.4 Results for the EQ synthetic experiments with 1D inputs 98
6.5 Results for the EQ synthetic experiments with 2D inputs 99
6.6 Results for the Matérn–5

2
synthetic experiments with 1D inputs 100

6.7 Results for the Matérn–5
2
synthetic experiments with 2D inputs 101

6.8 Results for the weakly periodic synthetic experiments with 1D inputs . . . 102
6.9 Results for the weakly periodic synthetic experiments with 2D inputs . . . 103
6.10 Results for the sawtooth synthetic experiments with 1D inputs 104
6.11 Results for the sawtooth synthetic experiments with 2D inputs 105
6.12 Results for the mixture synthetic experiments with 1D inputs 106
6.13 Results for the mixture synthetic experiments with 2D inputs 107
6.14 Parameters of the stochastic Lotka–Volterra equations 117
6.15 Results for the predator–prey experiments 119
6.16 Results for the EEG experiments . 122
6.17 Results for the climate downscaling experiments 127
6.18 Results for the climate downscaling and fusion experiments 131

ix

List of Mathematical Statements

2.1 Definition (Prediction map) . 16
2.2 Definition (Empirical neural process objective) 18
2.3 Definition (Translation) . 24
2.4 Definition (Translation equivariance; TE) 24

3.1 Definition (Posterior prediction map) . 29
3.2 Assumption . 32
3.3 Definition (Regular stochastic process) . 33
3.4 Definition (Continuous stochastic process) 33
3.5 Assumption (Regularity of ground-truth stochastic process) 34
3.6 Definition (Posterior prediction map, formal) 34
3.7 Definition (Continuous prediction map) . 34
3.8 Proposition (Regularity of posterior prediction map, part one) 35
3.9 Definition (Noisy prediction maps) . 36
3.10 Definition (The neural process objective) 36
3.11 Proposition . 36
3.12 Proposition . 36
3.13 Proposition . 37
3.14 Definition (Variational family, neural process) 37
3.15 Definition (Neural process approximation) 37
3.16 Definition (Gaussian process) . 38
3.17 Definition (Gaussian prediction map) . 38
3.18 Definition (Mean map) . 38
3.19 Definition (Kernel map) . 39
3.20 Definition (Variance map) . 39
3.21 Assumption . 39
3.22 Definition (Conditional neural process; CNP) 39
3.23 Definition (Gaussian neural process; GNP) 40
3.24 Definition (Conditional neural process approximation; CNPA) 40
3.25 Definition (Gaussian neural process approximation; GNPA) 40
3.26 Proposition (Characterisation of CNPA) . 40
3.27 Proposition (Characterisation of GNPA) . 41

x

3.28 Proposition (Regularity of GNPA) . 41
3.29 Assumption (Boundedness of context sets) 44
3.30 Assumption (Boundedness of noise) . 45
3.31 Assumption (Boundedness of ground-truth stochastic process) 45
3.32 Definition (Universal parameters) . 45
3.33 Proposition (Regularity of posterior prediction map, part two) 46
3.34 Proposition (Consistency of CNPA) . 47
3.35 Proposition (Consistency of GNPA) . 47

4.1 Definition (Function on data sets) . 52
4.2 Proposition . 52
4.3 Proposition . 53
4.4 Theorem (Deep set, preliminary; Zaheer et al., 2017) 53
4.5 Theorem (Deep set; Zaheer et al., 2017; Wagstaff et al., 2019) 54
4.6 Definition (Functional encoding) . 56
4.7 Definition (Multiplicity of data set) . 57
4.8 Theorem (Convolutional deep set) . 57
4.9 Theorem (Convolutional deep set for DTE) 60
4.10 Definition (Diagonal translation equivariance; DTE) 62

5.2 Proposition . 68
5.3 Proposition . 68
5.5 Procedure (Discretisation) . 70
5.6 Definition (Receptive field) . 72
5.7 Theorem . 73
5.8 Definition (Eigenmap) . 74
5.10 Definition (Diagonal translation equivariance of kernel map; DTE) 75
5.11 Proposition . 76
5.14 Procedure (Autoregressive application of noisy prediction map) 81
5.15 Proposition (Advantage of AR CNPs) . 83
5.16 Proposition (Recovery of smooth samples) 84

6.1 Definition (Pointwise MLP; Vaughan et al., 2022) 126

7.1 Definition (Coder) . 139

A.1 Lemma . 165
3.8 Proposition (Regularity of posterior prediction map, part one) 165
3.11 Proposition . 166
3.12 Proposition . 167

xi

A.2 Lemma . 167
3.13 Proposition . 168
3.27 Proposition (Characterisation of GNPA) . 168
3.26 Proposition (Characterisation of CNPA) . 170
3.28 Proposition (Regularity of GNPA) . 170
A.3 Lemma . 171
A.4 Lemma . 171
A.5 Proposition . 171
A.6 Proposition . 172
A.7 Proposition . 173
3.33 Proposition (Regularity of posterior prediction map, part two) 174
3.34 Proposition (Consistency of CNPA) . 176
3.35 Proposition (Consistency of GNPA) . 177
A.8 Proposition . 177

4.2 Proposition . 179
4.3 Proposition . 180
B.1 Lemma . 181
B.2 Lemma . 183
B.3 Lemma . 184
4.8 Theorem (Convolutional deep set) . 185
4.9 Theorem (Convolutional deep set for DTE) 186

5.2 Proposition . 188
5.3 Proposition . 189
5.7 Theorem . 189
5.11 Proposition . 191
5.15 Proposition (Advantage of AR CNPs) . 191
5.16 Proposition (Recovery of smooth samples) 192

xii

List of Models

5.1 Model (Conditional Neural Process; CNP; Garnelo et al., 2018a) 67
5.4 Model (Convolutional Conditional Neural Process; ConvCNP) 69
5.9 Model (Gaussian Neural Process; GNP) . 75
5.12 Model (Convolutional Gaussian Neural Process; ConvGNP) 76
5.13 Model (Fully Convolutional Gaussian Neural Process; FullConvGNP) . . . 77

xiii

Notation

x := y x is defined as y

x =: y y is defined as x

Scalars, Vectors, and Matrices

x Scalar

x ∧ y min(x, y)

x ∨ y max(x, y)

x Vector

xi:j Subvector of x consisting of elements i through j

xA Subvector of x: (xi)i∈A

x⊕ y Concatenation of x and y

|x| Dimensionality of vector

0 Vector of zeros

X Matrix

I Identity matrix

Sets and Functions

A ⊊ B A ⊆ B, but A ̸= B

A/∼ All equivalence classes for an equivalence relation ∼ on A

x 7→ . . . Function of x without name; an anonymous function

f = x 7→ g(x) f is equal to the function g

xiv

BA All functions A→ B

C(X ,Y) All continuous functions X → Y

Cb(X ,Y) All continuous and bounded functions X → Y

f |A Restriction of f to the domain A

f ◦ g Composition of f and g

f(x) If f : R→ R, shorthand for (f(x1), . . . , f(xn))

k(x,y) If k : R× R→ R, shorthand for
k(x1, y1) · · · k(x1, ym)

...
k(xn, y1) · · · k(xn, ym)

Topology and Analysis

→ Convergence

⇀ Convergence in the weak topology

d Metric

dX Metric on the space X

∥ • ∥ Norm

∥ • ∥p p-norm; for example, ∥ • ∥2 is the Euclidean norm

∥ • ∥H Norm on the space H

⟨ • , • ⟩ Inner product

⟨ • , • ⟩H Inner product on the space H

Probability

p Probability density

P Probability measure

E Expectation

xv

EX Expectation with respect to the random variable X

Ep Expectation with respect to the density p

Eµ Expectation with respect to the probability measure µ

cov(X, Y) Covariance between random variables X and Y

var(X) Variance of random variable X

∥ • ∥Lp Lp norm: E[(•)p]
1
p

∥ • ∥Lp(µ) Lp norm with respect to µ: Eµ[(•)p]
1
p

KL(µ, ν) Kullback–Leibler divergence of µ with respect to ν

H(µ) Differential entropy of µ with respect to the Lebesgue measure

N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ

Ber(p) Bernoulli distribution with probability p

oP(1) A random variable that converges to zero in probability

Measure Theory

B A typical Borel set

B(X) Borel σ-algebra on X

σ(G) σ-algebra generated by G

f ∈ F f is measurable with respect to F

T (µ) Pushforward measure: T (µ)(B) = µ(T−1(B))

Coordinate Projections

Px Projection onto coordinates x: f 7→ (f(x1), . . . , f(xn))

Pxµ Law of (f(x1), . . . , f(xn)), where f ∼ µ

P σ
xµ Law of (f(x1)+ε1, . . . , f(xn)+εn), where f ∼ µ and (εi)ni=1

i.i.d.∼ N (0, σ2)

xvi

Miscellaneous

Sn All permutations of size n

σ A typical permutation

Tτ Translation by τ (Definition 2.3)

Meta-Learning and Neural Processes

x(c) Context inputs

y(c) Context outputs

D(c) Context set

x(t) Target inputs

y(t) Target outputs

D(t) Target set

q Density of a prediction by a neural process

Q Variational family

LM Empirical neural process objective (Definition 2.2)

LNP Infinite-sample neural process objective (Definition 3.10)

enc Encoder

dec Decoder

Inputs, Outputs, and Data Sets

X Space of inputs

Y Space of outputs

IN Collection of all N inputs: XN

I Collection of all finite collections of inputs:
⋃
n≥0 IN

DN All data sets of size N : (X × Y)N

xvii

D≤N All data sets up to size N :
⋃N
n=0Dn

D All data sets:
⋃
N≥0DN

D A typical data set

[D] Equivalence class of D (Section 4.2)

Stochastic Processes and Prediction Maps

P All stochastic processes

π A typical prediction map D → P

πf Posterior prediction map (Definitions 3.1 and 3.6)

mπ Mean map of a prediction map π (Definition 3.18)

kπ Kernel map of a prediction map π (Definition 3.19)

vπ Variance map of a prediction map π (Definition 3.20)

D̃ Data sets of interest (Section 3.2)

Ĩ Target inputs of interest (Section 3.2)

xviii

Abbreviations

TE Translation equivariance (Definition 2.4)

DTE Diagonal translation equivariance (Definitions 4.10 and 5.10)

CNPA Conditional neural process approximation (Definition 3.24)

GNPA Gaussian neural process approximation (Definition 3.25)

AR Autoregressive

Classes of Neural Process Models

CNPs Conditional neural processes

LNPs Latent-variable neural processes

GNPs Gaussian neural processes (Section 5.5)

ConvNPs Convolutional neural processes (Chapter 5)

Neural Process Models

CNP Conditional Neural Process (Model 5.1)

NP Neural Process

GNP Gaussian Neural Process (Model 5.9)

ACNP Attentive Conditional Neural Process

ANP Attentive Neural Process

AGNP Attentive Gaussian Neural Process

ConvCNP Convolutional Conditional Neural Process (Model 5.4)

ConvNP Convolutional Neural Process

xix

ConvGNP Convolutional Gaussian Neural Process (Model 5.12)

FullConvGNP Fully Convolutional Gaussian Neural Process (Model 5.13)

xx

1 | Introduction

Before embarking on our journey through the land of neural processes, in Sections 1.1 and 1.2,
we first gently introduce meta-learning. Afterwards, in Section 1.3, we introduce neural pro-
cesses and explain the main contribution of this thesis. Section 1.4 then positions this thesis
in historical context, and Section 1.5 provides an outline of the following chapters. Lastly,
Section 1.6 lists publications and software published by the author during the PhD.

1.1 From Supervised Learning to Meta-Learning

What is the species of this animal? Does this MRI scan show anything of concern? What will
the number of daily new coronavirus cases be tomorrow? Without having seen numerous
examples of various species of animals; without having analysed many MRI scans; and
without having seen extensive historical numbers of daily coronavirus cases; accurately
and confidently answering these questions is nigh impossible.

These questions are all examples of supervised learning problems, which follow the same
abstract structure. Given observed data, what is the output for a new, yet unobserved
input? For example, given many observed photos of different species of animals, what is the
species of the animal on this new, unobserved photo? Many statistical estimation techniques
have been developed towards answering supervised learning problems. These techniques
algorithmically process observed data to make predictions for new inputs. However, for
complex problems, like predicting the species of an animal, these algorithms may require
large amounts of data.

Unfortunately, in practice, data can be scarce. Suppose, as a running example, that we
happen to spot a beautiful new species of agapornis, colloquially called lovebirds. No one
has ever seen this species before, but we manage to take five photographs of it. To share
our discovery with the world, we would like to distribute an algorithm that can process
a photograph and say “Yes, this is the new species!” or “No, this is not it.” Recognising the
species of a bird is not an easy task, so we will require a complex algorithm, like a neural
network (McCulloch et al., 1943; Rosenblatt, 1958; Ivakhnenko et al., 1965; Fukushima et al.,
1982; Werbos, 1982; LeCun et al., 1989). If you have not come across neural networks before,
just think of it as an incredibly flexible and versatile classification algorithm. As you might

1

have guessed, five photographs is far too few to train a neural network classifier. Perhaps one
hundred or a thousand example photographs would suffice, but five certainly will not.

In some sense, that a neural network requires a large amount of data to accurately determine
the species of bird is reasonable. After all, the algorithm has never seen a bird before, so
it must first learn what a bird even is before it can start to learn what tells apart different
bird species, and that simply requires a lot of data. But this is very wasteful, because it is
certainly not the first time that we encounter a bird! Perhaps, as a very young kid, having
only seen a few birds in our life, we would have trouble recognising further occurrences
of unusual new birds. However, as we grow older, we learn the general anatomy of a bird
and what generally distinguishes different species. We learn to be able to quickly tell the
general features of a species, even if we have never seen it before.

A key feature is that this learning process does not consist of just one attempt to recognise
just one new species, but, throughout life, consists of many repeated attempts to recognise
many new species. Hence, the life-long learning process can be seen as a stream of many
small recognition problems which are all related. Crucially, attempting to solve one of these
problems improves your ability to solve future ones. Meta-learning refers to scenarios like
this where learning happens at two scales: at the scale of every small problem, attempting
to solve that problem (learning); and across these problems, slowly improving the ability to
solve any one problem (learning to learn). Think of it as fast learning and slow learning.

This idea of learning to learn lies at the heart of the meta-learning paradigm in machine
learning (Schmidhuber, 1987; Thrun et al., 1998). The meta-learning paradigm attempts
to build algorithms that have the ability to improve their learning mechanism. Indeed, it
has been argued that this ability is necessary to build algorithms which learn like people
(Lake et al., 2015; Lake et al., 2017). This two-tiered learning structure can sometimes
explicitly be recognised in modern meta-learning algorithms as an inner loop and outer loop

(Andrychowicz et al., 2016; Finn et al., 2017; Grant et al., 2018). However, it need not stop at
two tiers (Schmidhuber, 1987).

Learning to recognise new species is a natural example of a meta-learning problem: a col-
lection of many supervised learning problems, often small, with shared statistical structure.
In meta-learning problems, solving any one of the small supervised learning problems is
often too hard; but, by considering many simultaneously, an algorithm can pick up on
the shared statistical structure, enabling it to perform better in any one of them. In this
sense, meta-learning is closely related to transfer learning, where the idea is to better solve
a problem by making use of different, but related problems. Whereas transfer learning
is about what is learned from (related data), meta-learning is additionally about how the
model learns (learning to learn).

2

This thesis focusses on advancing meta-learning algorithms for spatial, temporal, or spatio–
temporal meta-learning problems. We now give two representative examples of such
problems. For the first example, we consider electroencephalograms (EEG) of a multitude of
patients (Zhang et al., 1995). For many of these EEGs, we wish to estimate a derived signal,
like the patient’s mood or, more simply, the signal for an electrode that we did not measure.
We will develop an algorithm which learns to estimate the signal for a missing electrode by
learning from EEGs of other patients. The second example is a problem from climate science
called statistical downscaling (Maraun et al., 2018). In climate science, a large effort is spent
on building simulators which can make predictions for the past and for the future (Dee
et al., 2011). The output of these simulators, however, is sometimes very coarse grained,
such as a single predicted temperature for every 100 km. Downscaling methods attempt to
refine these coarse-grained outputs into more fine-grained predictions by using auxiliary
information, such as local topological features like elevation. We will develop an algorithm
which learns to downscale predictions of climate simulators on a future day by learning
from predictions on past days, where we recorded the true weather.

We have seen three examples of meta-learning problems: learning to recognise new bird
species, learning to impute missing electrodes in EEGs (or other derived signals), and
learning to downscale the output of a climate simulator. The variety of these examples
attests to the flexibility of the meta-learning paradigm. It almost looks like we can just
learn-to-learn anything! In the next section, we explore in more detail how an algorithm
can learn to learn.

1.2 Learning to Learn

Before explaining how a meta-learning algorithm can improve its own learning mechanism,
we take a step back to supervised learning and establish slightly more precise notation.
In a supervised learning problem, we are given observed data, and the goal is to make a
prediction for a new input. Denote the observed data by

D = {(x1, y1), . . . , (xN , yN)}, (1.1)

and denote the new input by x∗. Let y∗ be the unobserved output corresponding to x∗. For
example, xn might be the nth photo of a bird, yn the species of the bird on that photo, and
x∗ a photo of a bird for which we do not know the species y∗. To predict the species y∗ for
the new photo of a bird x∗, supervised learning algorithms typically parametrise a function
fθ which takes in x∗ and gives back a prediction for y∗:

fθ(x∗) predicts y∗. (1.2)

3

This function fθ depends on some parameters θ, which are learned from the observed data
D. A typical way to learn these parameters θ from the observed data D is by minimising
some loss function ℓ which measures how well a prediction matches the data:

θ̂ ∈ argmin
θ

1

N

N∑
n=1

ℓ(fθ(xn), yn). (1.3)

We denote a supervised learning problem by the triple (D, x∗, y∗).

In a meta-learning problem, we are given not one but many supervised learning prob-
lems, often small, with shared statistical structure. Henceforth, we will refer to the many
supervised learning problems as tasks:

Drelated = {(D(1), x(1)∗ , y(1)∗)

task 1

, . . . , (D(M), x(M)
∗ , y(M)

∗)

taskM

}. (1.4)

For example, x(1)∗ could be a photo of some diomedea (a genus of albatrosses) and D(1) the
few occurrences of diomedea that you have seen in the past; x(2)∗ could be a photo of some
chrysocolaptes (a genus of woodpeckers) and D(2) the few occurrences of chrysocolaptes
that you have seen in the past; et cetera.

In this meta-learning problem, we are also given a new, unobserved data set D(∗) with a
new, unobserved input x(∗)∗ . The goal is to predict the output y(∗)∗ corresponding to x(∗)∗ . To
clarify, in supervised learning, there is only one new thing: a new input x∗. In meta-learning,
there are two new things: a new data set D(∗) with a new input x(∗)∗ . Table 1.1 compares
the settings of meta-learning and supervised learning.

Whereas supervised learning requires sufficiently many data points, in meta-learning, the
number of data points in any one data set can be small. This perfectly suits our quest to share
the new species of agapornis with the world! Namely, D(∗) could be the five photographs
of the new species of agapornis that we managed to take. If x(∗)∗ is then anyone’s photo of
some agapornis, the meta-learning algorithm would tell whether the photo x(∗)∗ is of the new
species. Note that the tasksDrelated are related—all recognising species of genea of birds—but
perhaps not directly relevant for recognising agapornes. Meta-learning algorithms attempt
to leverage both Drelated and D(∗) to estimate the output y(∗)∗ corresponding to x(∗)∗ . This is
not always straightforward, because the observed tasks in Drelated may vary in how much
they inform the new data set D(∗) at hand.

Observing the outcome for the tasks in Drelated will allow the meta-learning algorithm to
improve its own learning mechanism, to learn to learn. The algorithm will attempt to
predict y(1)∗ for x(1)∗ by learning from D(1), and then slightly adjust itself based on how

4

Table 1.1: Comparison of the settings of supervised learning and meta-learning. In supervised
learning, there is one data set D, and one wishes to predict the output y∗ for a new input x∗. In
meta-learning, there is a collection of data sets Drelated. For a new data set D(∗), one wishes to
predict the output y(∗)∗ for a new input x(∗)∗ .

Setting Observed New To predict

Supervised learning {(x1, y1) , . . . , (xN , yN) } x∗ y∗

Meta-learning {(D(1)
, x

(1)
∗ , y

(1)
∗), . . . , (D

(M)
, x

(M)
∗ , y

(M)
∗)} (D

(∗)
, x

(∗)
∗) y

(∗)
∗

well it did (learning to learn). With the improved settings, it will attempt to predict y(2)∗

for x(2)∗ by learning from D(2), and again adjust itself based on how well it did (learning to
learn). Et cetera. After the meta-algorithm has improved itself sufficiently many times, it is
finally ready to predict y(∗)∗ for x(∗)∗ by learning from D(∗). To explain how a meta-learning
algorithm achieves this self-improving behaviour, we first consider what a supervised
learning algorithm would do.

For taskm, to predict y(m)
∗ for x(m)

∗ by learning from D(m), a supervised learning algorithm
might parametrise a function fθ and learn its parameters from the data D(m):

D(m) θ̂ ∈ argminθ
1
N

∑N
n=1 ℓ(fθ(x

(m)
n), y(m)

n) fθ̂(x
(m)
∗)

x(m)
∗

(1.5)

where we recall that fθ̂(x
(m)
∗) is the prediction for y(m)

∗ . Equation (1.5) can be interpreted as
a learning pipeline. This pipeline takes in D(m) and x(m)

∗ and produces a prediction for y(m)
∗ .

The goal of a meta-learning algorithm is to automatically improve this learning pipeline, to
learn to learn. To enable this, meta-learning algorithms propose something radical. They
propose to replace the optimisation procedure in (1.5) with a learnable function πψ depending
on some new parameters ψ:

D(m) πψ(x
(m)
∗ , D(m))

x(m)
∗

(1.6)

where πψ(x(m)
∗ , D(m)) now directly predicts y(m)

∗ . We call πψ the meta-learning algorithm.

As an example, the supervised learning function fθ could be a neural network which takes
in an image x(m)

∗ and which produces a probability for every class that x(m)
∗ could belong to.

5

The weights of the neural network, θ, are learned by comparing the predictions of the neural
network for examples in D(m) to the true classes. In comparison, a meta-learning approach
would parametrise a neural network πψ which takes in x(m)

∗ and the observed examplesD(m).
That is, D(m) is not used to learn the weights of the neural network; rather, just like the
image x(m)

∗ , the observed examples D(m) are fed directly to the network as an input.

To learn the parameters of ψ of the meta-learning algorithm πψ , we optimise its performance
on the observed tasks in Drelated:

ψ̂ ∈ argmin
ψ

1

M

M∑
m=1

ℓ(

learning for taskm

πψ(x
(m)
∗ , D(m)), y(m)

∗)

learning to learn

(1.7)

This optimisation illustrates that meta-learning algorithms learn at two scales: at the scale
of every task, attempting to solve that task (learning); and across tasks, optimising ψ to
become better at solving any one task (learning to learn).

In summary, a meta-learning algorithm directly parametrises the learning pipeline with
a function πψ. This function πψ takes in the new input x(m)

∗ and the observed data D(m)

and gives back a prediction for y(m)
∗ . This is unlike in supervised learning, where only x(m)

∗

is an input to fθ. By adjusting the parameters ψ, the meta-algorithm can improve its own
learning mechanism.

1.3 Main Contribution

Practical meta-learning algorithms implement πψ in various ways. Neural processes (NPs;
Garnelo et al., 2018a; Garnelo et al., 2018b), albeit a fairly recently introduced technique,
take the seemingly simple approach of directly parametrising πψ with a neural network.
But this is not so straightforward, for how do we parametrise a neural network that can
take a data set D as an input? Namely, the number of data points in a data set is variable,
so the neural network needs to accept an input of variable dimensionality. Moreover, the
order in which we observe data points should not matter, so the neural network needs to
not depend on the ordering of D. Neural processes use an existing tool from the literature
to address these issues (Zaheer et al., 2017; Edwards et al., 2017).

The bigger challenge, however, that neural processes face is that learning the mapping from
a data set D and a new input x∗ to a prediction for y∗ can be very data intensive, simply
because there are so many possible phenomena to predict. To appreciate this, consider the
meta-learning problem where we learn to predict the trajectory of a thrown ball. Let us
build an imaginary collection of tasks by throwing a ball under some random angle and with

6

some random momentum at various points of time in the day, like at 10:00, 11:00, and 14:00.
For every throw, we capture the position of the ball at two different times. For example,
if we throw the ball at time t = 10:00, we could record the position xt of the ball at times
t = 10:01 and t = 10:02. This makes a mini data set D = {(10:01,x10:01), (10:02,x10:02)},
which would be one of the tasks. The neural process will be trained by observing a few full
trajectories, and must then use D to predict the trajectory of a new throw.

We could solve this prediction problem with physics, though it would be hard to take into
account all external circumstances that might affect the trajectory, such as the weather.
Nevertheless, we expect that physics would give a reasonable prediction. The hope is that,
after observing a few full trajectories, the neural process would learn to also apply the laws
of physics. The problem is that the neural process does not know that we live in a universe
with fixed laws. It does not know that a ball thrown at 10:00 is subject to the same laws as a
ball thrown at 11:00! For what if the laws of the universe had changed between 10:00 and
11:00? As a consequence, the neural process will need to establish the laws of physics over
and over again, for every point in time. Clearly, this is not very data efficient.

This thesis attempts, in a limited way, to build fundamental laws of physics, like conserva-
tion of energy and conservation of momentum, into the neural process. Building in these
laws will greatly improve data efficiency and consequently improve predictions. To build
in conservation laws, we will use a deep result called Noether’s theorem (Noether, 1918).
Noether’s theorem says that conservation of energy is a consequence of time-translation

equivariance and that conservation of moment is a consequence of space-translation equivari-
ance. Time-translation equivariance says that it does not matter whether you throw the ball
at 10:00 or at 11:00: if the angle, momentum, and all weather conditions are the same, then
the resulting trajectory should be the same. Phrased differently, if you delay the throw by
an hour, then you delay the trajectory by an hour. Similarly, space-translation equivariance
says that if you move forward 10 meters, then the trajectory should be repositioned by 10
meters as well. In essence, these symmetries say that the laws of physics do not change
with time or space. The main contribution of this thesis is to build a general notion of
translation equivariance into a neural process.

1.4 Historical Context and Positioning

In 1987, Schmidhuber first put forward the idea of meta-learning by proposing algorithms
which can improve their own learning strategy (Schmidhuber, 1987; Schmidhuber, 1992;
Schmidhuber, 1993). The idea of giving a system the ability to learn its learning mechanism
then took hold and was further developed. Y. Bengio et al. (1990) and S. Bengio et al.
(1995) proposed the idea of directly parametrising a learning rule, and later Hochreiter et al.

7

(2001) and Younger et al. (2001) proposed the presently ubiquitous approach of performing
meta-learning with gradient descent, with a reference to this idea dating back to 1991 by
Schmidhuber. In 1998, Thrun et al.’s treatise on learning to learn put the field of meta-
learning on solid grounding.

Meta-learning is a varied and diverse field, especially nowadays, and a plethora of modern
methods have been developed (Andrychowicz et al., 2016; Vinyals et al., 2016; Ravi et al.,
2017; Edwards et al., 2017; Snell et al., 2017; Finn et al., 2017; Garnelo et al., 2018a; Gordon
et al., 2019; Requeima et al., 2019a). In this thesis, we shall only be concerned with neural
processes, and we shall exclusively consider the setting of spatial, temporal, or spatio–
temporal regression. Whereas other existing meta-learning techniques could be adjusted to
compete with neural processes in the applications that we will consider, this would require
additional research, so we limit our scope here. The most relevant coexisting line of work are
gradient-based methods (Finn et al., 2017; Finn et al., 2018b), which come with universality
guarantees like neural processes do (Finn et al., 2018a). See Section 7.2.1 by Gordon (2020)
for a more detailed comparison of neural processes and gradient-based meta-learning.

1.5 Outline of Thesis

This thesis is the result of wonderful collaborations with Jonathan Gordon, Andrew Y. K.
Foong, James Requeima, Stratis Markou, Anna Vaughan, Yann Dubois, and my supervisor
Richard E. Turner (Gordon et al., 2020; Foong et al., 2020; Bruinsma et al., 2021c; Markou et al.,
2022). The results in the chapters are often in a changed and extended form and, compared
to these publications, are not presented in the order that they originally appeared.

In Chapter 2, we will introduce meta-learning and neural processes on a more technical
level. This introduction will be centred around the concept of a prediction map: a mapping
from data sets to stochastic processes. The concept of a prediction map was first introduced
by Foong et al. (2020).

Chapter 3 develops a theoretical framework to rigorously analyse neural processes. Amongst
other definitions, we propose the concept of a neural process approximation (NPA; Defin-
ition 3.15), which defines the object that a neural process converges to in the limit of
infinite data. In Proposition 3.26, we characterise the NPA for the class of conditional
neural processes (CNPs; Garnelo et al., 2018a); and in Proposition 3.27, we characterise
the NPA for the class of Gaussian neural processes (GNPs; Section 5.5). On a theoretical
level, these characterisations enable us to generally reason about the behaviour of CNPs
and GNPs. On the practical side, these characterisations allow us to assess convergence of
CNPs and GNPs by describing what these classes should converge to. In Section 3.5, we

8

briefly touch upon consistency of neural processes, proving preliminary consistency results
for CNPs (Proposition 3.34) and for GNPs (Proposition 3.35). The analysis in this chapter is
not published, but builds on the analysis by Bruinsma et al. (2021c).

In Chapter 4, we develop two new representation theorems. In the context of neural pro-
cesses, representation theorems generally characterise functions on data sets. We extend
deep sets (Theorem 4.5; Zaheer et al., 2017; Edwards et al., 2017; Wagstaff et al., 2019) to con-
volutional deep sets, Theorems 4.8 and 4.9. Theorem 4.8 characterises functions on data sets
which are translation equivariant (Definition 2.4), and Theorem 4.9 characterises functions
on data sets which are diagonally translation equivariant (Definition 4.10). Theorem 4.8 was
first presented by Gordon (2020) and Theorem 4.9 by Bruinsma et al. (2021c).

In Chapter 5, we construct new neural process models by applying representation theorems
to the prediction map. First, we propose the class of convolutional neural processes (ConvNPs;
Section 5.3). ConvNPs exploit stationarity of the data by parametrising a translation-
equivariant prediction map (Proposition 5.2) with convolutional deep sets. In particular, we
propose the Convolutional Conditional Neural Process (ConvCNP; Model 5.4), a translation-
equivariant extension of the original Conditional Neural Process (CNP; Garnelo et al.,
2018a). Second, we propose the class of Gaussian neural processes (GNPs; Section 5.5).
GNPs model dependencies between target outputs by directly parametrising the covariance
between target points. Within this class, we propose the Convolutional Gaussian Neural

Process (ConvGNP; Model 5.12), an extension of the ConvCNP. We also propose the Fully
Convolutional Gaussian Neural Process (FullConvGNP; Model 5.13). The FullConvGNP fixes
representational capacity issues of the ConvGNP at the cost of increased computational
expense. Finally, we propose the class of autoregressive conditional neural processes (AR
CNPs; Section 5.6). AR CNPs deploy CNPs in an autoregressive fashion (Procedure 5.14)
to obtain dependent and non-Gaussian predictions. The ConvCNP was first presented
by Gordon et al. (2020), the ConvGNP by Markou et al. (2022), and the FullConvGNP by
Bruinsma et al. (2021c). AR CNPs have not been published.

In Chapter 6, we put these new models to the test. We first perform a large-scale bake-off to
establish the general weaknesses and strengths of five existing and eight newly proposed
neural process models. Afterwards, we perform three experiments involving real-world
data, demonstrating that neural processes can be deployed in a variety of settings. In the
last of these experiments, we use the ConvCNP, ConvGNP, and AR ConvCNP for statistical
downscaling (Maraun et al., 2018), extending the setup by Vaughan et al. (2022) to models
that can produce coherent samples. These experimental results have not been published,
but build on experiment setups by Gordon et al. (2020), Foong et al. (2020), Bruinsma et al.
(2021c), and Markou et al. (2022).

9

Finally, Chapter 7 presents a simple software abstraction that enables a compositional ap-
proach to implementing neural processes. This approach allows the user to rapidly explore
neural processes models by putting together elementary building blocks in different ways.
The software abstraction forms the basis of a Python package neuralprocesses (Bruinsma et
al., 2022a) available at https://github.com/wesselb/neuralprocesses. neuralprocesses

was used to implement all models in this thesis and perform all experiments in Chapter 6. The
software abstraction was conceived in NeuralProcesses.jl in collaboration with Jonathan
Gordon (Bruinsma et al., 2022b). neuralprocesses is primarily developed by the author, but
features contributions from Tom Andersson, Stratis Markou, and James Requeima.

1.6 List of Publications and Software

This section lists publications and software the author published during the course of the
PhD. The authors of software are the contributors of the repository ordered by additions at
the listed time.

Peer-Reviewed Publications

W. P. Bruinsma, M. Tegnér, and R. E. Turner (2022f). “Modelling Non-Smooth Signals With
Complex Spectral Structure”. In Proceedings of the 25th International Conference on

Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. PMLR.
Electronic print: https://arxiv.org/abs/2203.06997.

B. Coker, W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez (2022). “Wide Mean-Field
Bayesian Neural Networks Ignore the Data”. In Proceedings of the 25th International

Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning
Research. PMLR. Electronic print: https://arxiv.org/abs/2202.11670.

S. Markou, J. Requeima, W. P. Bruinsma, A. Vaughan, and R. E. Turner (2022). “Practical
Conditional Neural Processes Via Tractable Dependent Predictions”. In Proceedings of

the 10th International Conference on Learning Representations. Electronic print: https:
//arxiv.org/abs/2203.08775.

A. Y. K. Foong, W. P. Bruinsma, D. R. Burt, and R. E. Turner (2021). “How Tight Can
PAC-Bayes be in the Small Data Regime?” In Advances in Neural Information Processing

Systems 34. Curran Associates, Inc. Electronic print: https://arxiv.org/abs/2106.
03542.

A. Y. K. Foong, W. P. Bruinsma, J. Gordon, Y. Dubois, J. Requeima, and R. E. Turner (2020).
“Meta-Learning Stationary Stochastic Process Prediction With Convolutional Neural

10

https://github.com/wesselb/neuralprocesses
https://arxiv.org/abs/2203.06997
https://arxiv.org/abs/2202.11670
https://arxiv.org/abs/2203.08775
https://arxiv.org/abs/2203.08775
https://arxiv.org/abs/2106.03542
https://arxiv.org/abs/2106.03542

Processes”. In Advances in Neural Information Processing Systems 33. Curran Associates,
Inc. Electronic print: https://arxiv.org/abs/2007.01332.

W. P. Bruinsma, E. Perim, W. Tebbutt, J. S. Hosking, A. Solin, and R. E. Turner (2020).
“Scalable Exact Inference in Multi-Output Gaussian Processes”. In Proceedings of the

22nd International Conference on Artificial Intelligence and Statistics. Vol. 89. Proceedings
of Machine Learning Research. PMLR. Electronic print: https://arxiv.org/abs/1911.
06287.

J. Gordon, W. P. Bruinsma, A. Y. K. Foong, J. Requeima, Y. Dubois, and R. E. Turner (2020).
“Convolutional Conditional Neural Processes”. In Proceedings of the 8th International

Conference on Learning Representations. Electronic print: https://arxiv.org/abs/
1910.13556.

J. Requeima, W. Tebbutt, W. P. Bruinsma, and R. E. Turner (2019b). “The Gaussian Process
Autoregressive Regression Model (GPAR)”. In Proceedings of the 22nd International

Conference on Artificial Intelligence and Statistics. Vol. 89. Proceedings of Machine
Learning Research. PMLR, pp. 1860–1869. url: http://proceedings.mlr.press/v89/
requeima19a.html.

Lightly Peer-Reviewed Workshop Submissions

A. Rawat, J. Requeima, W. Bruinsma, and R. Turner (2022). “Challenges and Pitfalls of
Bayesian Unlearning”. In 40th International Conference on Machine Learning. Workshop

on Updatable Machine Learning. Electronic print: https://arxiv.org/abs/2207.
03227.

S. Markou, J. Requeima, W. P. Bruinsma, and R. E. Turner (2021). “Efficient Gaussian
Neural Processes for Regression”. In 39th International Conference on Machine Learning.

Workshop on Uncertainty & Robustness in Deep Learning. Electronic print: https://
arxiv.org/abs/2108.09676.

W. P. Bruinsma, J. Requeima, A. Y. K. Foong, J. Gordon, and R. E. Turner (2021c). “The Gaus-
sian Neural Process”. In Proceedings of the 3rd Symposium on Advances in Approximate

Bayesian Inference. Electronic print: https://arxiv.org/abs/2101.03606.

R. Xia, W. P. Bruinsma, W. Tebbutt, and R. E. Turner (2021). “The Gaussian Process Latent
Autoregressive Model”. In Proceedings of the 3rd Symposium on Advances in Approximate

Bayesian Inference. url: https://openreview.net/forum?id=kvq3WKXvwQ_.

P. Berkovich, E. Perim, and W. P. Bruinsma (2020). “GP-ALPS: Automatic Latent Process Se-
lection for Multi-Output Gaussian Process Models”. In Proceedings of the 2nd Symposium

11

https://arxiv.org/abs/2007.01332
https://arxiv.org/abs/1911.06287
https://arxiv.org/abs/1911.06287
https://arxiv.org/abs/1910.13556
https://arxiv.org/abs/1910.13556
http://proceedings.mlr.press/v89/requeima19a.html
http://proceedings.mlr.press/v89/requeima19a.html
https://arxiv.org/abs/2207.03227
https://arxiv.org/abs/2207.03227
https://arxiv.org/abs/2108.09676
https://arxiv.org/abs/2108.09676
https://arxiv.org/abs/2101.03606
https://openreview.net/forum?id=kvq3WKXvwQ_

on Advances in Approximate Bayesian Inference. Vol. 118. Proceedings of Machine Learn-
ing Research. PMLR. Electronic print: https://arxiv.org/abs/1911.01929.

Unreviewed Preprints and Other

A. Y. K. Foong, W. P. Bruinsma, and D. R. Burt (2022). “A Note on the Chernoff Bound for
Random Variables in the Unit Interval”. In arXiv:2205.07880. Electronic print: https:
//arxiv.org/abs/2205.07880.

W. P. Bruinsma, A. Y. K. Foong, and R. E. Turner (2021b). What Keeps a Bayesian Awake at

Night? Part 2: Night Time. url: https://mlg-blog.com/2021/03/31/what-keeps-a-
bayesian-awake-at-night-part-2.html.

W. P. Bruinsma, A. Y. K. Foong, and R. E. Turner (2021a). What Keeps a Bayesian Awake

at Night? Part 1: Day Time. url: https://mlg-blog.com/2021/03/31/what-keeps-a-
bayesian-awake-at-night-part-1.html.

J. Hron andW. P. Bruinsma (2020). Solutions for High-Dimensional Statistics: A Non-Symptotic

Viewpoint by Martin J. Wainwright. url: https://high-dimensional-statistics.
github.io/.

Machine Learning Software

W. P. Bruinsma and Z. B. Patel (2022d). Stheno: Gaussian Process Modelling in Python. Python
package, registered on PyPI as stheno. url: https://github.com/wesselb/stheno.
(Visited on 01/06/2022.)

W. P. Bruinsma, T. Andersson, S. Markou, and J. Requeima (2022a). NeuralProcesses: A
Framework for Composing Neural Processes in Python. Python package, registered on
PyPI as neuralprocesses. url: https://github.com/wesselb/neuralprocesses.
(Visited on 01/06/2022.)

W. P. Bruinsma and J. Gordon (2022b). NeuralProcesses.jl: A Framework for Composing Neural

Processes in Julia. Julia package, unregistered. url: https://github.com/wesselb/
neuralprocesses. (Visited on 01/06/2022.)

W. P. Bruinsma (2022d). GPCM: Implementation of the GPCM and Variations. Python
package, registered on PyPI as gpcm. url: https://github.com/wesselb/gpcm. (Visited
on 01/06/2022.)

W. P. Bruinsma (2022g). OILMM: Implementation of the Orthogonal Instantaneous Linear

Mixing Model. Python package, registered on PyPI as oilmm. url: https://github.com/

12

https://arxiv.org/abs/1911.01929
https://arxiv.org/abs/2205.07880
https://arxiv.org/abs/2205.07880
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-2.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-2.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-1.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-1.html
https://high-dimensional-statistics.github.io/
https://high-dimensional-statistics.github.io/
https://github.com/wesselb/stheno
https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/gpcm
https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm

wesselb/oilmm. (Visited on 01/06/2022.)

W. P. Bruinsma (2022c). GPAR: Implementation of the Gaussian Process Autoregressive Re-

gression Model. Python package, registered on PyPI as gpar. url: https://github.com/
wesselb/gpar. (Visited on 01/06/2022.)

W. P. Bruinsma (2022f). MLKernels: Kernels, the Machine Learning Ones. Python package,
registerd on PyPI as mlkernels. url: https : / / github . com / wesselb / mlkernels.
(Visited on 01/06/2022.)

Other Software

W. P. Bruinsma, F. Vicentini, and R. Comelli (2022g). Plum: Multiple Dispatch in Python.
Python package, registered on PyPI as plum-dispatch. url: https://github.com/
wesselb/plum. (Visited on 01/06/2022.)

W. P. Bruinsma and Z. B. Patel (2022c). LAB: A Generic Interface for Linear Algebra Backends.
Python package, registered on PyPI as backends. url: https://github.com/wesselb/
lab. (Visited on 01/06/2022.)

W. P. Bruinsma (2022e). Matrix: Structured Matrices. Python package, registered on
PyPI as backends-matrix. url: https : / / github . com / wesselb / matrix. (Visited
on 01/06/2022.)

W. Tebbutt, W. P. Bruinsma, F. C. White, M. Zgubic, A. Arslan, S. Axen, R. Luo, S. Schaub,
N. Robinson, B. Richard, D. Widmann, C. Vogt, and V. B. Shah (2022). FiniteDiffer-

ences.jl: High Accuracy Derivatives, Estimated via Numerical Finite Differences. Julia
package, registered as FiniteDifferences. url: https://github.com/JuliaDiff/
FiniteDifferences.jl. (Visited on 01/06/2022.)

W. P. Bruinsma (2022b). FDM: Estimate Derivatives with Finite Differences. Python package,
registered on PyPI as fdm. url: https://github.com/wesselb/fdm. (Visited on
01/06/2022.)

W. P. Bruinsma and W. Tebbutt (2022e). Varz: Painless Optimisation of Constrained Variables

in AutoGrad, TensorFlow, PyTorch, and JAX. Python package, registered on PyPI as varz.
url: https://github.com/wesselb/varz. (Visited on 01/06/2022.)

W. P. Bruinsma (2022a). Algebra: Algebraic Structures. Python package, registered on PyPI as
algebra. url: https://github.com/wesselb/algebra. (Visited on 01/06/2022.)

13

https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm
https://github.com/wesselb/gpar
https://github.com/wesselb/gpar
https://github.com/wesselb/mlkernels
https://github.com/wesselb/plum
https://github.com/wesselb/plum
https://github.com/wesselb/lab
https://github.com/wesselb/lab
https://github.com/wesselb/matrix
https://github.com/JuliaDiff/FiniteDifferences.jl
https://github.com/JuliaDiff/FiniteDifferences.jl
https://github.com/wesselb/fdm
https://github.com/wesselb/varz
https://github.com/wesselb/algebra

2 | Neural Processes

Abstract. This chapter is a technical introduction to neural processes. It also introduces
the idea of translation equivariance, which the remainder of this thesis builds upon.

Outline. In Section 2.1, we coin the concept of prediction maps and introduce meta-learning
from this prespective. Then, in Section 2.2, we introduce neural processes; and in Section 2.3,
we investigate consistency requirements for neural processes. In Section 2.4, we open up a
neural process, explaining the general anatomy of neural process architectures. Finally, in
Section 2.5, we introduce the notion of a translation-equivariant neural process.

Attributions and relationship to prior work. Prediction maps and translation equivari-
ance of prediction maps were first considered by Foong, Bruinsma, Gordon, Dubois, Re-
queima, and Turner (2020) and later further analysed by Bruinsma, Requeima, Foong,
Gordon, and Turner (2021c).

2.1 Prediction Maps

Neural processes are a meta-learning algorithm with the distinguishing feature that they
produce internally consistent predictions. In this section, we will make this precise with
the notion of a consistent meta-learning algorithm, and we will use this notion to introduce
prediction maps. The concept of prediction maps captures the essence of neural processes.
Chapter 3 will use prediction maps to engage in a rigorous theoretical analysis of neural
processes, and Chapter 5 will parametrise prediction maps to construct practical neural
process architectures. To begin with, we generally present the meta-learning setting that
neural processes operate in.

For simplicity, assume that data points have one-dimensional inputs and one-dimensional
outputs. Let X ⊆ R be a compact input space and let Y = R be the output space. Let
DN = (X × Y)N be the collection of all N input–output pairs, and let D =

⋃∞
N=0DN be

the collection of all finite numbers of input–output pairs, which includes the empty set
∅. We call elements of D data sets.1 For a data set D ∈ DN , denote D = (x,y) where

1 A data set should not depend on the order of the data points. It would therefore be apt to identify data sets
whose input–output pairs agree up to a permutation. We will return to this issue in Chapter 4.

14

x ∈ XN is the concatenation of the inputs and y ∈ YN the concatenation of the outputs.
For a vector z, let |z| denote its number of elements.

In the meta-learning setting, we are given a collection of data sets (Dm)
M
m=1 (Vinyals et

al., 2016; Ravi et al., 2017). This collection of data sets is called a meta–data set, and the
individual data sets Dm are called tasks. Every task Dm is split up Dm = D(c)

m ∪D(t)
m into

a context set D(c)
m = (x(c)

m ,y
(c)
m) and a target set D(t)

m = (x(t)
m,y

(t)
m). Here x(c)

m are called the
context inputs, y(c)

m the context outputs, x(t)
m the target inputs, and y(t)

m the target outputs. The
goal of meta-learning is to devise an algorithm which takes in a context set D(c)

m and which
produces the best possible prediction for the corresponding target set D(t)

m, by which we
mean a prediction for the target outputs y(t)

m given the target inputs x(t)
m. This means that

what goes into meta-learning algorithm is a context set D(c)
m and some target inputs x(t)

m

and that what comes out is a prediction for y(t)
m. If the inputs x are images, the outputs y

are categories, and the number of context data is small, then this setting is called few-shot

image classification (Fei-Fei et al., 2006; Lake et al., 2015). We, however, shall be concerned
with low-dimensional inputs and real-valued outputs.

This thesis focusses on probabilistic meta-learning algorithms. Such algorithms take in
a context set D(c)

m and the target inputs x(t)
m and produce a probability distribution for y(t)

m.
This, however, immediately raises concerns. As we show now, probabilistic meta-learning
algorithms can produce the same prediction for y(t)

m in multiple ways, and there is no
guarantee that these predictions are consistent with each other. For notational convenience,
let us denote the context set by D, the target inputs by x, and the target outputs by
y. Suppose that we have just two target inputs and two target outputs: x = (x1, x2)

and y = (y1, y2). By running the meta-learning algorithm on (D, (x1, x2)), we obtain a
prediction for (y1, y2). What we can now do is to discard the prediction for y2, which means
that we are left with just a prediction for y1. However, we could also have obtained a
prediction for y1 by running the meta-learning algorithm on just (D, x1), and there no
guarantee that these predictions will be the same! Additionally, suppose that we run the
meta-learning algorithm on (D, (x2, x1)), swapping around x2 and x1. We then obtain
a prediction for (y2, y1). By then swapping around the dimensions of the prediction, we
obtain a prediction for (y1, y2). Again, we could also have obtained a prediction for (y1, y2)
by running the meta-learning on just (D, (x1, x2)), and again there is no guarantee that
these predictions would line up. We call a probabilistic meta-learning algorithm consistent

if it always produces the same prediction, regardless of whether you discard (marginalise)
or permute target inputs and outputs.

The discussion of consistency does not end here. By feeding the output of a meta-learning
algorithm back into itself, it is possible to come up with more consistency requirements. We

15

will come back to this in Section 2.3. For now, it suffices to define consistency in the above
sense: predictions do not depend discarding or permuting target inputs and outputs.

Consider a consistent probabilistic meta-learning algorithm. It turns out that consistency is
very naturally satisfied. For a context setD and target inputs x, denote the prediction for y
by πx(D), which is a probability distribution. (The reason for denoting this distribution as a
function of D will become clear shortly.) Then consistency of the meta-learning algorithm
implies that the collection of {πx(D) : x ∈ RN , N ∈ N} is consistent under marginalisation

and consistent under permutations. Consistency under marginalisation means that, for all
N1, N2 ∈ N, inputs x1 ∈ XN1 , inputs x2 ∈ XN2 , and Borel sets B1 ∈ B(YN1),

πx1⊕x2(D)(B1 × YN2) = πx1(D)(B1). (2.1)

where x1 ⊕ x2 concatenates x1 and x2. Consistency under permutations means that, for all
N ∈ N, inputs x ∈ XN , Borel sets B1, . . . , BN ∈ B(YN), and permutations σ ∈ SN ,

πxσ(1),...,xσ(N)
(D)(Bσ(1) × · · · ×Bσ(N)) = πx1,...,xN (D)(B1 × · · · ×BN). (2.2)

If consistency under marginalisation and consistency under permutations are satisfied, then
Kolmogorov’s extension theorem (Theorem 12.1.2; Dudley, 2002) implies that there exists a
Y-valued stochastic process on X such that every finite-dimensional distribution (f.d.d.) at
x is equal to πx(D). Denote this stochastic process by π(D) (no subscript).

Let P be the collection of all Y-valued stochastic processes on X . We have seen that, for
every context set D ∈ D, a consistent probabilistic meta-learning algorithm produces a
stochastic process π(D) ∈ P . This means that every consistent probabilistic meta-learning
algorithm is in correspondence with a map π : D → P . The map π : D → P may seem
like a complicated object, but it captures a simple and important idea. For every data set
D ∈ D, the map π : D → P produces a stochastic process π(D) ∈ P . We argue that this
stochastic process can be interpreted very simply as a prediction. “A prediction for what?”
you may ask. Well, the stochastic process π(D) has a finite-dimensional distribution for
all possible target inputs x, so π(D) implies a prediction for any choice of target inputs x.
In particular, the stochastic process π(D) does not depend on any choice of target inputs
x; instead, π(D) predicts everywhere. The idea of letting a prediction be represented by a
stochastic process takes the target inputs out of the equation and therefore simplifies the
setup. Under this interpretation, consistent probabilistic meta-learning algorithms can be
interpreted, very simply, as maps from data sets D to predictions P . We capture this idea in
the following definition.

Definition 2.1 (Prediction map). A prediction map π is a map π : D → P .

16

In summary, a probabilistic meta-learning algorithm is a map from context setsD and target
inputs x to probability distributions for the target outputs y. We call a probabilistic meta-
learning algorithm consistent if predictions do not depend on the way they are produced.
Consistency is a desirable property and turns out to be naturally satisfied: every consistent
probabilistic meta-learning algorithm is in correspondence with a prediction map.

In this section, we have seen what a desirable probabilistic meta-learning algorithm is,
namely, a prediction map. In the next section, we will introduce neural processes as an
approach that is fundamentally based on prediction maps.

2.2 Neural Processes

Neural processes (Garnelo et al., 2018a; Garnelo et al., 2018b) approach a meta-learning
problem by directly parametrising a prediction map using neural networks (McCulloch
et al., 1943; Rosenblatt, 1958; Ivakhnenko et al., 1965; Fukushima et al., 1982; Werbos, 1982;
LeCun et al., 1989). We shall not yet be concerned with how this parametrisation works.
What is important is that the parametrisation is direct and simple.

Although we will not yet discuss precisely how neural processes parametrise prediction
maps, to appreciate the elegance of the approach, it is helpful to keep the following example
in mind:

πθ(D) = x 7→ decθ(x, z) where z =
∑

(x,y)∈D

ϕθ(x, y) (2.3)

where ϕθ : X × Y → RK is a neural network operating on every context data point
(x, y) ∈ D and decθ : X × RK → Y is another neural network mapping a target input
x and the vector z to the predicted value. The parameters θ are the weights of the two
neural networks. The notation in (2.3) means that πθ(D) returns the deterministic function
x 7→ decθ(x, z) as the prediction. Note that this example does not fully exploit the prediction
map formalism, because πθ(D) may return a random function, that is, a stochastic process.
We will return to the general form of neural process architectures in Section 2.4.

The parametrisation of the prediction map by a neural process is often not able to produce
every possible stochastic process. For example, a large class of neural processes is restricted
to producing only Gaussian processes. We therefore define a neural process as a map
πθ : D → Q, where Q ⊆ P is called the variational family and θ ∈ Θ are the parameters
of the neural process. The variational family Q determines the approximation properties
of the neural process and can be interpreted just like the variational family in variational
inference (Wainwright et al., 2008). By ranging over θ ∈ Θ, an equivalent definition of a
neural process is that it is a collection of prediction maps {πθ : θ ∈ Θ}. This is very similar

17

to the definition of a statistical model, a collection of probability distributions {Pθ : θ ∈ Θ}.
By considering πθ for every θ ∈ Θ to be an hypothesis, one could also call {πθ : θ ∈ Θ} the
hypothesis class, which is more standard in learning theory.

Following more conventional notation, for all data sets D ∈ D and inputs x ∈ RN , we will
denote the density of the finite-dimensional distribution of πθ(D) at x with respect to the
Lebesgue measure by qθ(• |x, D), assuming that this density exists.

To learn the parameters θ, neural processes propose an objective which maximises the
likelihood of the target sets under the predictions given the context sets:

θ̂ ∈ argmax
θ∈Θ

1

M

M∑
m=1

log qθ(y
(t)
m |x(t)

m, D
(c)
m). (2.4)

This objective was originally proposed by Garnelo et al. (2018a) and also considered by
Gordon et al. (2019). Throughout this thesis, we will call it the empirical neural process

objective or just the neural process objective when “empirical” is clear from the context.

Definition 2.2 (Empirical neural process objective). The empirical neural process objective
is given by

LM(πθ) = −
1

M

M∑
m=1

log qθ(y
(t)
m |x(t)

m, D
(c)
m) (2.5)

where qθ(• |x, D) is the density of the finite-dimensional distribution of πθ(D) at x with

respect to the Lebesgue measure, assuming that this density exists.

For a general Q, note that the density qθ(• |x(t)
m, D

(c)
m) might not be tractable, which means

that the empirical neural process objective cannot always be evaluated exactly.

The class of neural processes proposed originally by Garnelo et al. (2018a) is the class of
conditional neural processes (CNPs). CNPs choose Q to be the collection of all Gaussian
processes which do not model dependencies between target outputs. This means that the
prediction of a CNP is independent at any two different target inputs. For CNPs, the density
qθ(• |x(t)

m, D
(c)
m) is Gaussian, so the neural process objective can be evaluated exactly. Ex-

amples of CNPs are the original Conditional Neural Process (CNP; Garnelo et al., 2018a),
the Attentive Conditional Neural Process (ACNP; Kim et al., 2019), the Convolutional Con-
ditional Neural Process (ConvCNP; Section 5.3; Gordon et al., 2020), the Group-Equivariant
Conditional Neural Process (EquivCNP; Kawano et al., 2021), and the Steerable Convolu-
tional Conditional Neural Processes (SteerCNP; Holderrieth et al., 2021). The ConvCNP is
introduced in this thesis in Section 5.3, and the EquivCNP and SteerCNP are both models
based on the ConvCNP.

18

A word of caution. There are many neural processes and many classes of neural processes
which all have similar names. For example, there is the class of conditional neural processes
(CNPs), and there is the Conditional Neural Process (CNP). Even though these names differ
only by two characters, they are not the same! The Conditional Neural Process is a specific
model in the class of conditional neural processes. We admit that this naming might be
confusing, but it is what is used in the literature, so we will stick to it. To help the reader,
classes of neural processes will always be lower case (e.g., “conditional neural processes”)
and the abbreviation will always end with an “s” (e.g., “CNPs”). Specific neural process
models, on the other hand, will always be capitalised (e.g., “the Conditional Neural Process”)
and the abbreviation will never end with an “s” (e.g., “the CNP”).

In addition to CNPs, another commonly encountered class is the class of latent-variable
neural processes (LNPs; Garnelo et al., 2018b). LNPs use a latent variable to induce a
variational family Q of non-Gaussian processes. Importantly, unlike CNPs, LNPs do model
dependencies between target outputs. For LNPs, to optimise the neural process objective,
approximations are necessary. Examples of LNPs are the Neural Process (NP; Garnelo et al.,
2018b), the Attentive Neural Process (ANP; Kim et al., 2019), the Functional Neural Process
(FNP; Louizos et al., 2019), the Sequential Neural Process (SNP; G. Singh et al., 2019), and
the Convolutional Neural Process (CovnNP; Foong et al., 2020). The ConvNP is derived
from the ConvCNP, but not introduced in this thesis.

We have discussed CNPs, which chooseQ to be the collection ofGaussian processes which do
notmodel dependencies between target outputs; and LNPs, which chooseQ to be a collection
of non-Gaussian processes which domodel dependencies between target outputs. One might
wonder about the variational familyQ of Gaussian processes which do model dependencies
between target outputs. This class of neural processes is introduced in Section 5.5 and
called the class of Gaussian neural processes (GNPs). GNPs have the unique ability to model
dependencies between target outputs without requiring approximations to evaluate the
neural process objective. Like for CNPs, for GNPs, the neural process objective can be
evaluated exactly. Examples of GNPs are the Gaussian Neural Process (GNP; Chapter 6;
Markou et al., 2022), the Attentive Gaussian Neural Process (AGNP; Chapter 6; Markou et al.,
2022), the Convolutional Gaussian Neural Process (ConvGNP; Section 5.5; Markou et al.,
2022), and the Fully Convolutional Gaussian Neural Process (FullConvGNP; Section 5.5;
Bruinsma et al., 2021c). All these models are introduced in this thesis.

A helpful hierarchical organisation of neural process models, which extends the division of
neural processes into CNPs and LNPs, is the Neural Process Family (Gordon, 2020; Dubois
et al., 2020). The class of GNPs forms a new subfamily of the Neural Process Family.

19

2.3 More on Consistency

In Section 2.1, we defined a meta-learning algorithm to be consistent if predictions do not
depend on whether you discard (marginalise; see (2.1)) or permute (see (2.2)) target inputs
and outputs. Let us call consistency in this sense consistency with respect to the target set.
As we then alluded to, by feeding the output of the meta-learning algorithm back into itself,
it is possible to come up with more consistency requirements.

In this section, we define an additional consistency requirement called consistency with re-

spect to the context set. If a meta-learning algorithm is consistent with respect to both the tar-
get set and the context set, then we will see that the algorithm essentially performs Bayesian
inference in an underlying probabilistic model. Since exact Bayesian inference is generally
computationally intractable, giving up consistency with respect to the context set can there-
fore be interpreted as a way of circumventing these computational challenges. Consistency
with respect to the context set will be an important point of discussion when we introduce
the class of autoregressive conditional neural processes (AR CNPs) in Section 5.6.

Like in Section 2.1, consider just two target inputs and outputs: x = (x1, x2) andy = (y1, y2).
To make a prediction for (y1, y2), it is simplest to just run the meta-learning algorithm on
(D, (x1, x2)). Alternatively, we could attempt a two-stage procedure: we could first run
the meta-learning algorithm on (D, x1) to obtain a prediction for y1, and then feed this
prediction back into the algorithm to obtain a prediction for y2. Let ỹ1 be a sample from
the prediction for y1, and letD ∪ (x1, ỹ1) denote the context set with the data point (x1, ỹ1)
appended; recall that D is just a collection of input–output pairs, so it is perfectly fine to
append another input–output pair. In the two-stage procedure, after obtaining a prediction
for y1, we run the meta-learning algorithm on (D∪ (x1, ỹ1), x2) to obtain a prediction for y2.
If the prediction for (y1, y2) produced by the two-stage procedure agrees with just running
the meta-learning algorithm on (D, (x1, x2)), then we say that the algorithm is consistent
with respect to the context set.

More precisely, in terms of the family {πx(D) : D ∈ D, x ∈ RN , N ∈ N}, the meta-
learning algorithm is consistent with respect to the context set if, for allD ∈ D,N1, N2 ∈ N,
inputs x1 ∈ XN1 and x2 ∈ XN2 , and Borel sets B1 ∈ B(YN1) and B2 ∈ B(YN2),∫

B1

πx2(D ∪ (x1,y1))(B2) d(πx1(D))(y1) = πx1⊕x2(D)(B1 ×B2). (2.6)

Note that πx1(D) is a measure, so the left-hand side of (2.6) is an integral with respect to the
measure πx1(D), i.e. an expectation over the law πx1(D) of the random variable y1. The left-
hand side can therefore also be written as Ey1∼πx1 (D)[1B1(y1)πx2(D∪ (x1,y2))(B2)].

20

Consistency with respect to the context set, when combined with consistency with respect
to the target set, is a very strong requirement. Consider a probabilistic meta-learning
algorithm which is consistent with respect to both the target set and the context set. For
every data set D ∈ D, we then argued in Section 2.1 that there exists a Y-valued stochastic
process onX such that every f.d.d. at x is equal to πx(D). Let us more informally denote the
density of πx(D) by pD(f(x)). Then (2.6) says that, for all context sets D ∈ D, additional
context inputs x(c), and target inputs x(t),

pD∪(x(c),y(c))(f(x
(t))) = pD(f(x

(t)) | f(x(c)) = y(c)), (2.7)

where the right-hand side is a conditional distribution of pD(f(x(t)), f(x(c))). Specifically,
suppose that the context set were empty: D = ∅. Then, for all additional context inputs
x(c) and target inputs x(t),

density of πx(t)((x(c),y(c))

D(c)

) = p(x(c),y(c))

D(c)

(f(x(t))) = p∅(f(x
(t)) | f(x(c)) = y(c)

D(c)

). (2.8)

Since this equality holds for all target inputsx(t), relabellingD(c) toD, we find that there exists
some underlying stochastic process f ∼ p∅(f) such that, for all data sets D ∈ D, π(D) is the

posterior of f conditioned onD. This observation is surprising! A prediction map π : D → P
is simply a map from data sets to stochastic processes without any further structure, so it is
not at all necessary that π computes posteriors of some underlying stochastic process.

To conclude, if a probabilistic meta-learning algorithm is consistent with respect to both
the target set and context set, then it computes posteriors of some underlying stochastic
process. In practice, designing a neural network architecture that satisfies consistency with
respect to the context set is extremely difficult, so nearly all neural process approaches—if
not all—are consistent only with respect to the target set. A notable exception is BRUNO
(Korshunova et al., 2018; Korshunova et al., 2020), an approach which shares strong similar-
ities with neural processes. BRUNO achieves consistency with respect to the context set by
embedding a simple probabilistic model into the approach. That nearly all neural processes
are inconsistent respect to the context set poses theoretical and practical challenges for the
class of AR CNPs that we will introduce in Section 5.6.

Posteriors of stochastic processes are generally computationally intractable, especially if
neural networks are involved. We have therefore uncovered an interesting perspective on
the computational benefits of neural processes: by giving up consistency with respect to
the context set, neural processes are able to circumvent the computational challenges that
come with computing Bayes’ rule.

21

2.4 The Anatomy of a Neural Process

We have seen that neural processes approach meta-learning problems by directly paramet-
rising a prediction map πθ : D → Q using neural networks. Section 2.2 presented (2.3) as an
example of a neural process, illustrating what a neural process architecture looks like:

πθ(D) = x 7→ decθ(x, z) where z =
∑

(x,y)∈D

ϕθ(x, y). (2.3)

In this section, we will explain the general form of neural process architectures. This general
form will be motivated from theoretical principles in Chapter 4.

To parametrise a prediction map, a neural process architectures needs to overcome two
challenges:

1. Data sets D ∈ D have a variable number of elements, which means that the neural
network must process inputs of varying dimensionality.

2. Two data setsD1 ∈ D andD2 ∈ D with the same data points but a different ordering
of the data points should be considered the same. In other words, πθ(D) should not
depend on the ordering of the elements of D. We more formally say that πθ should
be permutation invariant.

Neural processes approach both challenges by parametrising the prediction map with a
so-called encoder–decoder architecture. This means that πθ is the composition of an encoder

encθ and a decoder decθ:
πθ = decθ ◦ encθ. (2.9)

When we compute πθ(D), the encoder first computes an encoding encθ(D), which we
temporarily denote by z. This encoding z is then given to the decoder, which finally
computes the output, decθ(z):

πθ(D) = decθ(z) where z = encθ(D). (2.10)

The encoder should be thought of as a lightweight component which is specifically designed
to address the above two challenges. The decoder, on the other hand, will be more heavy-
weight, containing most of the representational capacity of the neural process. To address
the above two challenges, the encoder will adhere to two design requirements:

1. The encoding z is of a fixed format, regardless of the dimensionality of D.

2. The encoding z does not depend on the ordering of the data points in D.

22

By adhering to these two requirements, the encoder takes the problems of varying dimen-
sionality and permutation invariance out of the way for the decoder. Therefore, in a sense,
the decoder can forget that varying dimensionality and permutation invariance were a
problem in the first place. Since the encoding z is of a fixed format, e.g. a fixed-dimensional
vector, the decoder can process the encoding using conventional approaches, e.g. using a
feed-forward neural network. In the example (2.3), the encoder satisfies the first requirement
by mapping every data point (x, y) to a fixed-dimensional vector ϕθ(x, y) and satisfies the
second requirement by summing over the data points: z =

∑
(x,y)∈D ϕθ(x, y).

Although many neural processes follow an encoder–decoder architecture, this is not a strict
and universal rule: neural process architectures may sometimes deviate from the encoder–
decoder structure. In addition, for neural processes that do follow an encoder–decoder archi-
tecture, precisely where the encoder ends and the decoder starts might sometimes be ambigu-
ous. Nevertheless, encoder–decoder architectures are a useful way to understand the design
of many neural processes, which is why we propose it as the basic mental model.

To design a neural process, one must design an encoder and a decoder. It is important
that these designs appropriately balance flexibility and parameter efficiency. Namely, one
can design very flexible encoders and decoders which can learn nearly every possible
prediction map, but these designs will involve an inordinate number of parameters which
cannot feasibly be learned from finite data. Conversely, one can design encoders and
decoders depending only on a few parameters, but these designs might be too constrained
to satisfactorily solve the meta-learning problem at hand. In Chapter 4, we will consider
current approaches to designing encoders and decoders. We will propose new approaches
which, for spatial, temporal, and spatio–temporal meta-learning problems, can make a
better trade-off between flexibility and parameter efficiency. These new approaches will be
based on the idea of translation equivariance, which we discuss next.

2.5 Translation Equivariance

Themain contribution of this thesis is to improve parameter efficiency of neural processes by
building in a symmetry called translation equivariance. Although translation equivariance
is not appropriate for every application, when it is appropriate, it can substantially improve
in-distribution and generalisation performance. In spatial, temporal, and spatio–temporal
meta-learning problems, translation equivariance is often helpful. In this section, we will
define translation equivariance without motivation and demonstrate, in a real example, that
it can be helpful. Chapter 5 will show that translation equivariance is related to stationarity

of the underlying stochastic process.

23

π

Tτ

π

Tτ

Figure 2.1: Commutative diagram illustrating translation equivariance of a neural process π : D → P .
The predictions of the neural process π are shown in dashed blue.

Definition 2.3 (Translation). For τ ∈ X , let Tτ denote a translation by τ . Translations act

on real numbers, data sets, and functions in the following way.

• For an input x ∈ X , Tτx produces another input in X :

Tτx = x+ τ. (2.11)

• For a data set D = (x,y) ∈ D, TτD produces another data set in D:

TτD = ((Tτx1, . . . , Tτxn),y). (2.12)

• For a function f : X → Z , Tτf produces another function X → Z :

Tτf(x) = f(x− τ). (2.13)

• For a stochastic process µ ∈ P , Tτµ produces another stochastic process in P :

Tτµ(B) = µ(T−1
τ (B)) for all cylinder sets B. (2.14)

Definition 2.4 (Translation equivariance; TE). Consider a map π : A → B where the

elements in A and B can be translated. Then π is translation equivariant (TE) if

π ◦ Tτ = Tτ ◦ π for all τ ∈ X . (2.15)

Intuitively, if a map is translation equivariant, then, whenever the input is translated, the
output is translated similarly. In the case of a neural process, translation equivariance is
illustrated in Figure 2.1. In this case, the map πθ : D → Q is from data sets D to stochastic
processesQ. Translation equivariance then means that, whenever a data setD is shifted by
some amount, TτD, the corresponding prediction π(TτD) is equal to the original prediction,
π(D), shifted by the same amount, Tτπ(D). Technically, one says that application of the

24

−2 −1 0 1 2

−2

0

2

C
N

P
Within Training Range

2 3 4 5 6

−2

0

2

Beyond Training Range

−2 −1 0 1 2

−2

0

2

C
on

vC
N

P

2 3 4 5 6

−2

0

2 Ground truth
Prediction

Figure 2.2: Comparison of the prediction of a trained CNP, a non-convolutional neural process,
and ConvCNP, a convolutional conditional neural process. Shows predictions by the models in
dashed blue and predictions by the ground truth in dot-dashed purple. The models were trained
by observing data on [−2, 2]. We call [−2, 2] the training range. In the plots, the training range is
shaded. The left column shows predictions for observations in the training range, and the right
column shows predictions for observations beyond the training range. Filled regions are central
95%-credible regions. The CNP and ConvCNP are taken from the experiment in Section 6.2.

neural process and translation commute. Another important example of a translation
equivariant map is a convolutional neural network (Fukushima et al., 1982; LeCun et al.,
1989). If we pass a translated version of an input image to a CNN, then the CNN produces
the original output translated by the same amount.

Section 5.3 will propose general parametrisations of prediction maps πθ : D → Q that are
translation equivariant. We call this class of neural processes convolutional neural processes
(ConvNPs). Whereas non-convolutional neural processes are implemented with multi-layer
perceptrons, convolutional neural processes are driven by convolutional neural networks.
Examples of ConvNPs are the Convolutional Conditional Neural Process (ConvCNP; Sec-
tion 5.3; Gordon et al., 2020), the Convolutional Gaussian Neural Process (ConvGNP;
Section 5.5; Markou et al., 2022), and the Fully Convolutional Gaussian Neural Process
(FullConvGNP; Section 5.5; Bruinsma et al., 2021c).

Figure 2.2 compares a trained CNP, a non-convolutional neural process, to a trained Con-
vCNP, a convolutional neural process. In the training range (see legend of Figure 2.2), the
CNP shows a reasonable fit, perhaps slightly underfitting in some places. However, when it is
evaluated outside the training range, the model completely breaks down. On the other hand,
the ConvCNP shows a tight fit, closely recovering the ground truth, and seamlessly gener-
alises to observations beyond the training range. This demonstrates, in a real example, that
translation equivariance can improve in-distribution and generalisation performance.

25

2.6 Summary and Outlook

Section 1.5 provided a brief outline of this thesis. Whilst we summarise this chapter, we
again connect to future chapters to elucidate the overarching structure in more detail.

A desirable probabilistic meta-learning algorithm is one that is consistent (with respect to the

target set) (Section 2.1), and such a probabilistic meta-learning algorithm can be identified
with a prediction map (Definition 2.1). This forms the basis for neural processes. A neural
process approaches a meta-learning problem in a natural way by directly parametrising a
prediction map using neural networks (Section 2.2). Compared to stochastic process models
such as Gaussian processes, neural processes the circumvent computational challenges
associated with computing Bayes’ rule by giving up consistency with respect to the context

set (Section 2.3). In Chapter 3, we will build on the idea of prediction maps to engage in a
rigorous theoretical analysis of neural processes.

To parametrise a prediction map, neural processes often use encoder–decoder architectures
(Section 2.4). Although using encoder–decoder architectures is not a necessity, they are a
helpful mental model. In Chapter 4, we will study representation theorems. In the context
of neural processes, representation theorems are general characterisations of functions on
data sets. Representation theorems can be used to theoretically motivate encoder–decoder
architectures.

One of themain contributions of this thesis is to build translation equivariance (Definition 2.4)
into a neural process (Section 2.5). For spatial, temporal, and spatio–temporal meta-learning
problems, translation-equivariant neural processes can make a better trade-off between
flexibility and parameter efficiency. In Chapter 5, we will use the representation theorems
from Chapter 4 to construct translation-equivariant neural processes. We call this class
convolutional neural processes (ConvNPs). In addition to ConvNPs, Chapter 5 will also intro-
duce the classes of Gaussian neural processes (GNPs) and autoregressive conditional neural

processes (AR CNPs). GNPs have the unique ability to model dependencies between target
outputs without requiring approximations for the neural process objective. AR CNPs, which
we did not discuss in this chapter, trade the desirable property of consistency for better per-
formance. Hence, AR CNPs are no longer consistent probabilistic meta-learning algorithms,
but they may offer improved predictions. In Chapter 6, we will put these new models and
existing approaches to the test, establishing general weaknesses and strengths.

Over the course of this chapter, one might have noticed that there are many flavours of
neural processes. To help with the implementation of all of these flavours, Chapter 7 will
present a software abstraction that enables the user to rapidly explore neural processes
models by putting together elementary building blocks in different ways.

26

3 | Prediction Map Approximation

Abstract. This chapter presents a theoretical framework called prediction map approxim-

ation to rigorously analyse neural processes. The starting point is the definition of the
so-called posterior prediction map. The posterior prediction map is the map from a data set
to the posterior distribution of a stochastic process given that data set. It is the main object
of interest. The premise of the framework is that neural processes form various classes of
approximations of the posterior prediction map.

Outline. In Section 3.1, we motivate the key elements of the framework. Afterwards,
in Section 3.2, we introduce the main technical concepts, setting us up for more formal
analysis. In Section 3.3, we formally introduce and analyse the neural processes objective.
As the name suggests, this is the objective that neural processes aim to optimise. Then,
in Section 3.4, we define neural process approximations. A neural process approximation
precisely defines what a class of neural processes targets. Finally, in Section 3.5, we analyse
how a neural process approximation is estimated in practice. We engage in a discussion
about convergence.

Attributions and relationship to prior work. Prediction maps and translation equivari-
ance of predictionwere first considered by Foong, Bruinsma, Gordon, Dubois, Requeima, and
Turner (2020) and later further analysed by Bruinsma, Requeima, Foong, Gordon, and Turner
(2021c). Although the analysis of this chapter has not been published in its current form, the
analysis borrows considerably from Bruinsma et al. (2021c). The analysis by Bruinsma et al.
(2021c) was primarily conducted by the author and James Requeima and checked by Jonathan
Gordon and Andrew Y. K. Foong. All work was supervised by Richard E. Turner.

3.1 Introduction

In this chapter, we develop a theoretical framework to rigorously analyse neural processes.
Building on the idea of a prediction map (Definition 2.1), this framework is called prediction

map approximation. The primary goal of this chapter is an attempt to reduce the gap
between the theory and practice of neural processes: to formally present neural processes
to the more theoretically minded audience, and to bring subtle but important theoretical
issues to the attention of the more practically oriented.

27

In the current literature, theoretical analyses of meta-learning use a variety of techniques
to study generalisation of meta-learning algorithms: Baxter (1998) and Baxter (2000) use
classical learning-theoretic techniques; Maurer (2005) investigates algorithmic stability;
Pentina et al. (2014), Alquier et al. (2017), Amit et al. (2018), Yin et al. (2020), T. Liu et
al. (2021), and Rothfuss et al. (2021) use PAC-Bayes bounds; Farid et al. (2021) combine
algorithmic stability with PAC-Bayes bounds; Jose et al. (2021), Chen et al. (2021), and
Rezazadeh et al. (2021) use bounds based on mutual information, which are similar to
PAC-Bayes bounds; and Khodak et al. (2019) and Denevi et al. (2019) apply tools from
convex analysis. Although the theoretical definitions that we propose in this chapter could
be used to engage in similar analyses for neural processes, we will not get that far. We will
spend our effort on establishing a solid theoretical grounding for neural processes.

Henceforth, assume the setting of a meta-learning problem as presented in Section 2.1. To
motivate the theoretical framework, the starting point is a reasonable generative model
for the meta–data set (Dm)

M
m=1. Specifically, we will assume that the tasks (Dm)

M
m=1 are

independently and identically distributedly (i.i.d.) generated from some noise-corrupted
ground-truth Y-valued stochastic process f on X with law p(f). That is, form = 1, . . . ,M ,
independently and identically sample

fm ∼ p(f), (3.1)

y(c)
m | fm, x(c)

m , ε
(c)
m = fm(x

(c)
m) + ε

(c)
m with ε

(c)
m ∼ N (0, σ2

fI), (3.2)

y(t)
m | fm, x(t)

m, ε
(t)
m = fm(x

(t)
m) + ε

(t)
m with ε

(t)
m ∼ N (0, σ2

fI), (3.3)

where σf > 0 is the standard deviation of the observation noise. Importantly, in this
setup, the realisation of the ground-truth process is different for every task. In fact, the
realisations (fm)Mm=1 are independently and identically drawn from p(f). That all fm have
the same distribution may seem restrictive, because in practice tasks can be very different,
like recognising different bird species. This can be modelled by letting p(f) be a mixture
distribution. For example, roll a biased K-faced die, and then draw f from one of K
different stochastic processes. We hence see that the assumption of identical distributions
is not necessarily so restrictive, which leaves us with the assumption that all (fm)Mm=1 are
drawn independently. This independence assumption might or might not be applicable to a
particular application, but it is an assumption that we make to simplify the analysis.

Assume that the context inputs (x(c)
m)

M
m=1 are sampled i.i.d. from some distribution p(x(c))

and that the target inputs (x(t)
m)

M
m=1 are sampled i.i.d. from possibly a different distribution

p(x(t)). The distributions p(y(c) |x(c)) and p(x(c)) define a distribution over context sets
p(D(c)). Henceforth, to simplify the notation, we will drop the scripts •m, • (c), and • (t) and
denote a context set by D ∼ p(D), the ground-truth stochastic process by f ∼ p(f), the

28

target inputs by x ∼ p(x), and the target outputs by y ∼ p(y |x).

Meta-learning algorithms aim to make the best possible prediction for a target set given
a context set. For a meta–data set sampled from the generative model, the best possible
prediction is given by the posterior over a target set given the context set. More specifically,
for a context set D and target inputs x, the desired prediction for the target outputs y
is given by p(f(x) + ε |x, D). We more concisely define this solution with the posterior
prediction map.

Definition 3.1 (Posterior prediction map). The posterior prediction map is defined by

πf : D → P , πf (D) = p(f |D). (3.4)

In words, the posterior prediction map maps a data set to the prediction for that data set by
the ground-truth stochastic process. For a Y-valued stochastic process g on X with law µ

and target inputs x, denote the law of g(x) by Pxµ. In addition, for noise standard deviation
σ > 0, the law of g(x) plus additive Gaussian noise with variance σ2 denote by P σ

xµ:

g(x) + ε ∼ P σ
xµ with ε ∼ N (0, σ2I). (3.5)

Note that P σ
xµ always has a density with respect to the Lebesgue measure given by

x 7→ Eg[N (y | g(x), σ2I)]. With this notation, to solve the meta-learning problem, for
a context set D and target inputs x, the desired prediction for the target outputs y is given
by P σf

x πf (D).

The central premise of the prediction map framework is that a neural process aims to
approximate the posterior prediction map πf . This means that, for every data set D ∈ D,
the neural process attempts to approximate πf (D). Let us elaborate on this simple, but
important observation.

What a neural process is not doing is finding an approximation of the ground-truth stochastic
process f , and then using this approximate prior to approximate any posterior p(f |D).
Instead, a neural process aims to directly approximate the posteriors p(f |D) without
approximating the prior as an intermediate step. This distinction is best understood by
comparing the empirical neural process objective (Definition 2.2) proposed by Garnelo et al.
(2018a) to the usual maximum likelihood objective. Let D(c) denote some context set, let
D(t) denote some target set, and let θ be the parameters of some model. Whereas the usual
application of maximum-likelihood estimation would maximise log pθ(D(c), D(t)), neural
processes maximise only log pθ(D

(t) |D(c)). As the following application of the product rule

29

illustrates, this means that neural processes give up modelling the context data D(c):

log pθ(D
(c), D(t))

usual maximum-likelihood
objective

= log pθ(D
(t) |D(c))

neural process
objective

+ log pθ(D
(c))

what neural processes
give up

(3.6)

To see why giving up modelling the context data D(c) can be helpful, consider the ground-
truth stochastic process given by f = h0 with probability 1

2
and f = h1 otherwise, where

h0, h1 : X → Y are fixed deterministic functions. By construction, this prior p(f) is bimodal,
allowing only one of two possible realisations. A posterior, on the other hand, can be much
simpler: if the observed data D is able to roughly pin down whether f is h0 or h1, then
p(f |D) will be a roughly unimodal distribution centred around h0 or h1. We therefore see
that directly approximating a posterior p(f |D) can be a simpler problem than trying to
model the prior p(f). But we can make an even stronger case by considering what happens
if we do approximate p(f) and then use this approximate prior to approximate posteriors
p(f |D). Suppose that we approximate p(f) with a Gaussian process. One reasonable
approximation is given by the Gaussian process with mean function x 7→ Ep(f)[f(x)] and
covariance function (x, y) 7→ covp(f)(f(x), f(y))

1: f ≈ (1
2
+ 1

2
Z)h1 + (1

2
− 1

2
Z)h2 with

Z ∼ N(0, 1)2. This Gaussian process will cover not just h0 and h1, but it will cover all
affine combinations of h0 and h1. In words, this approximate prior will not just consider h0
and h1 as possible outcomes, but it will also consider all affine combinations of h0 and h1
as possible outcomes! Since this range of affine combinations is a much bigger collection
than just {h0, h1}, approximations of posteriors formed by using this approximate prior
will have strongly inflated uncertainty and might give rise to realisations like 0.7h0+0.3h1,
which can be totally unlike h0 or h1. By giving up modelling the prior using the context
set D(c) and directly approximating the posterior without approximating the prior as an
intermediate step, neural processes attempt to circumvent this issue.

To approximate the posterior prediction map πf , the framework will define a loss function

1 Specifically, this approximation is the Gaussian neural process approximation (GNPA) defined in Defini-
tion 3.25 and characterised in Proposition 3.27. Intuitively, the GNPA constructs the moment-matched
Gaussian process by taking the mean function and covariance function of the non-Gaussian process. See
Section 3.4 for a more detailed discussion.

2 Write f = Bh1 + (1−B)h2 with B ∼ Ber(12). Then f − E[f] = (B − 1
2)h1 − (B − 1

2)h2, so

E[(f(x)− E[f(x)])(f(y)− E[f(y)])
= E[((B − 1

2)h1(x)− (B − 1
2)h2(x))((B −

1
2)h1(y)− (B − 1

2)h2(y))] (3.7)
= 1

4 (h1(x)− h2(x))(h1(y)− h2(y)), (3.8)

noting that E[(B − 1
2)

2] = 1
2 ·

1
4 + 1

2 ·
1
4 = 1

4 = 1
2 ·

1
2 . The covariance function in (3.8) is the covariance

function of 1
2Z(h1 − h2) with Z ∼ N (0, 1), so f ≈ E[f] + 1

2Z(h1 − h2) = (12 + 1
2Z)h1 + (12 −

1
2Z)h2.

30

L(π, σ) which measures how well a candidate approximation π and associated noise σ > 0

approximate the posterior prediction map πf and true noise σf . The particular loss function
that we choose is called the neural process objective LNP:

LNP(π, σ) = Ep(D)p(x)[KL(P
σf
x πf (D), P σ

x π(D))]. (3.9)

This loss function is called the neural process objective because aMonte Carlo approximation
over the tasks (Dm)

M
m=1 recovers the empirical neural process objective (Definition 2.2)

up to a constant that does not depend on (π, σ). Consistent with the notation previously
introduced for q, let qθ(• |x, D) denote the density of P σ

x π(D)with respect to the Lebesgue
measure. Then

LNP(π, σ) = −Ep(D)p(x)p(y)[log qθ(y |x, D)]− Ep(D)p(x)[H(P
σf
x πf (D))] (3.10)

≈ − 1

M

M∑
m=1

log qθ(y
(t)
m |x(t)

m, D
(c)
m) + constant indep. of (π, σ) (3.11)

which agrees with Definition 2.2. In (3.10), H(P
σf
x πf (D)) denotes the differential entropy

of the probability measure P σf
x πf (D). The neural process objective raises three important

points of concern, which we address in turn in the next sections:

1. The neural process objective LNP is defined by taking an expectation of the function
(D,x) 7→ KL(P

σf
x πf (D), P σ

x π(D)) over p(D)p(x). However, it is not at all clear
whether this function is even measurable. For example, measurability of this function
depends on the regularity of D 7→ πf (D) and D 7→ π(D), which thus far remain
unaddressed. In Section 3.3, we address these issues and carefully define the neural
process objective LNP.

2. The neural process objectiveLNP depends on p(D) and p(x). Therefore, if weminimise
LNP over a potentially restricted collection of prediction maps, then the minimiser
depends on p(D) and p(x). In Section 3.4, we define two classes of minimisers of LNP.
We characterise these minimisers to determine how they depend on p(D) and p(x).

3. Even though (3.11) is a Monte Carlo approximation of LNP, a minimiser of (3.11) need
not necessarily converge to a minimiser of LNP. In Section 3.5, we will determine
conditions under which a minimiser of (3.11) converges to a minimiser of LNP.

Having motivated the setup of the framework, we proceed to definitions that will form the
technical foundation.

31

3.2 Technical Preliminaries

In Section 2.1, we defined DN as the collection of all data sets of size N and D as the
collection of all data sets of finite size. It will be convenient to establish similar notation
for inputs. Let IN = XN be the collection of all N inputs, and let I =

⋃∞
N=1 IN be the

collection of all finite collections of inputs. For a vector x, recall that |x| denotes the
dimensionality of x. Endow D with the metric dD(D1, D2) = ∥x1 − x2∥2 + ∥y1 − y2∥2 if
|x1| = |x2| and∞ otherwise. Similarly, endow I with the metric dI(x1,x2) = ∥x1−x2∥2 if
|x1| = |x2| and∞ otherwise. Allowing dD and dI to attain the value infinity for arguments
of different dimensionality is nothing to worry about. It simply means that the metric
spaces associated to dD and dI naturally break down into disjoint unions of metric spaces
of fixed dimensionalities. Alternatively, we could separately define metrics for each of these
fixed-dimensional spaces, but allowing dD and dI to attain infinity is a more concise and
arguably more elegant construction.

Whereas in the motivating section the distribution p(D)was induced by randomly sampling
context inputs and passing these to a sample of the ground-truth stochastic process f , the
prediction map approximation framework more simply assumes that we are just given some
distribution p(D). In some sense, this means that p(D) is decoupled from the ground-truth
stochastic process f . Similarly, the framework assumes also that we are just given some
distribution over p(x). We now define these distributions.

Let D̃ ⊆ D be a collection of data sets of interest, and let Ĩ ⊆ I be a collection of target
inputs of interest. The choices D̃ = D and Ĩ = I are allowed. The reason for considering
subsets of D is practical: we most likely do not have context sets (D(c))Mm=1 that span all
possible data sets. Rather, (D(c))Mm=1 might visit only a particular subspace of D, and this
can now be modelled by constraining D̃. Similarly, we most likely will not sample target
inputs of arbitrary size, which can be modelled by constraining Ĩ . Although Ĩ and D̃ may
be chosen arbitrarily, the approximation properties of neural processes will depend on Ĩ
and D̃.

For a choice of D̃ and Ĩ , let p(D) be any distribution on the Borel space of D̃ and let p(x)
be any distribution on the Borel space of Ĩ . This means thatD ∼ p(D) is a random element
of D̃ and x ∼ p(x) is a random element of Ĩ . We will require two technical conditions on
p(x) and p(D).

Assumption 3.2. Assume that p(x) and p(D) assign positive probability to every open set.

Moreover, assume that p(x) and p(D) are complete, possibly by completing the probability

spaces.

32

A technical subtelty that the framework will have to deal with is that conditional neural
processes do not define continuous processes. Namely, conditional neural processes define
only marginal statistics and do not specify any dependencies between different function
values. An example of such a prediction is the stochastic process f such that f(x) ∼ N (0, I)

for all x ∈ I . By Kolmogorov’s extension theorem (Theorem 12.1.2; Dudley, 2002), this
construction defines a perfectly valid stochastic process. The problem, however, is that
the lack of regularity requires the process to be defined on the sample space YX with the
associated cylindrical σ-algebra, and this σ-algebra contains too few measurable sets to
be useful. Namely, a set is in the cylindrical σ-algebra if and only if it depends on only
countably many values of f ; that is, if it depends on f(x) with x ∈ T ⊆ X where T is
countable. But the space YX lacks any kind of regularity, so, even for basic properties like
continuity, we must put a condition on f(x) for all x ∈ X . As a consequence, the resulting
probability space is not able to express, for example, whether f is continuous or not.

Even though many conditional neural processes are defined on inexpressive probability
spaces, we still require some kind of regularity. For inputs x, let µx denote the distribution of
f(x). Instead of assuming continuity of f , we will assume that x 7→ µx is weakly continuous:
if xi → x, then µxi

⇀ µx where⇀ denotes convergence in the weak topology. Note that
this condition is automatically satisfied if f is a continuous process, which means that the
condition is weaker than pathwise continuity. Unfortunately, this assumption is still too
strong, which we illustrate with an example. Consider the previous example of f such that
f(x) ∼ N (0, I) for all x ∈ I ; that is, like conditional neural processes, f does not model
dependencies. Since cov(f(1/n), f(0)) ̸→ cov(f(0), f(0)), (x, y) 7→ cov(f(x), f(y)) is not
continuous at (x, y) = (0, 0). Consequently, x 7→ µx is not weakly continuous at inputs
x with repeated elements. Fortunately, this observation is inconsequential, because the
collection of all xwith repeated elements is a p(x)-null set whenever, e.g., p(x) has a density
with respect to the Lebesgue measure. This motivates the following two definitions.

Definition 3.3 (Regular stochastic process). Call a Y-valued stochastic processes µ on X
p(x)-regular if x 7→ µx is weakly continuous p(x)-almost everywhere. That is, µ is p(x)-

regular if there exists a measurable A ⊆ Ĩ such that
∫
A
p(x) dx = 1 and x 7→ µx is weakly

continuous at all x ∈ A. Denote the collection of all p(x)-regular processes by P .

Definition 3.4 (Continuous stochastic process). Let Pc be the collection of all Y-valued
stochastic processes on X which are continuous. Note that Pc ⊆ P .

Note that the definition of P depends on our choice of p(x), but Pc does not. Whereas
we will assume p(x)-regularity for predictions of neural processes, for the ground-truth
stochastic process f we will require a slightly stronger assumption. In particular, we will
assume that f is Hölder continuous with respect to the Lp-norm.

33

Assumption 3.5 (Regularity of ground-truth stochastic process). There exist an exponent

p ≥ 2, Hölder exponent β ∈ (1
p
, 1], constant c > 0, and radius r > 0 such that

∥f(x)− f(y)∥Lp ≤ c|x− y|β whenever |x− y| < r. (3.12)

In addition, assume that f(x) ∈ Lp for all x ∈ X .

By the triangle inequality, it holds that ∥f(x)∥Lp ≤ ∥f(x)−f(y)∥Lp +∥f(y)∥Lp . Therefore,
by (3.12), the additional assumption that f(x) ∈ Lp for all x ∈ X is true if f(y) ∈ Lp is
true for some y ∈ X .

Assumption 3.5 is a fairly standard assumption, except that we require the exponent p at
least be two. For example, (3.12) is the assumption in Kolmogorov’s continuity criterion,
which says that Lp-Hölder continuity implies pathwise Hölder continuity by giving up 1

p

in the exponent (Section 4.2, Theorem 1.4.2; Norris, 2018). In particular, it implies that f
is a continuous process, so f ∈ Pc. For example, if f is a zero-mean stationary Gaussian
process with covariance function k : X → R, then Assumption 3.5 is satisfied if

lim
r→0

k(0)− k(r)
r2/p−ε

= 0 (3.13)

for some ε > 0. Choosing p = 4 and ε = 1
4
works for many kernels. More generally, if k is

Hölder continuous with any Hölder exponent, then we can always find large enough p ≥ 2

and small enough ε > 0 such that (3.13) is satisfied.

The prediction map framework is centred around approximating the posterior prediction
map πf with another simpler, more tractable prediction map π. Let µf denote the law of
the ground-truth stochastic process f .

Definition 3.6 (Posterior prediction map, formal). Let σf > 0 be some observation noise.

Then define the posterior prediction map πf : D → P by the following Radon–Nikodym

derivatives: for all D ∈ D,

dπf (D)

dµf
(f) =

N (y | f(x), σ2
fI)

Ef [N (y | f(x), σ2
fI)]

=
r(y − f(x))
Z(x,y)

(3.14)

where D = (x,y), r(x) = exp(− 1
2σ2

f
∥x∥22), and Z(x,y) = Ef [r(y − f(x))].

Note that Z(x,y) > 0, for otherwise |f(x)| =∞ with positive probability for some x ∈ X ,
contradicting Assumption 3.5. To approximate πf , we must be concerned with regularity
of πf . The following definition captures the basic form of regularity of a prediction map:
continuity. Recall that⇀ denotes convergence in the weak topology.

34

Definition 3.7 (Continuous prediction map). Call a prediction map π : D → P continuous
if Di → D implies that Pxπ(Di) ⇀ Pxπ(D) for all inputs x ∈ I . Denote the collection

of all prediction maps D → P which are continuous byM, and denote the collection of all

prediction maps D → Pc which are continuous byMc. Note thatMc ⊆M.

The following proposition says that any posterior πf (D) satisfies the same Lp-Hölder and
integrability condition as f (Assumption 3.5) and that πf is indeed continuous.

Proposition 3.8 (Regularity of posterior prediction map, part one).

(1) For all data sets D ∈ D, there exists a constant cD > 0 such that

∥f(x)− f(y)∥Lp(πf (D)) ≤ cD|x− y|β whenever |x− y| < r. (3.15)

In addition, ∥f(x)∥Lp(πf (D)) <∞ for all x ∈ X .

(2) πf is continuous.

Proof. See Appendix A.1.

We have setup the basic definitions of the theoretical framework. We will now proceed with
our formal analysis of neural processes. Our first matter of concern is the neural process
objective.

3.3 The Neural Process Objective

In this section, we formally define the neural process objective LNP (Definition 3.10) and
the space over which LNP will be optimised (Definition 3.9). Intuitively, the neural process
objective LNP is the infinite-sample limit of the empirical neural process objective LM
(Definition 2.2). We will show that LNP is lower semi-continuous (Proposition 3.12) and
that the posterior prediction map πf is the unique minimiser of LNP (Proposition 3.13). This
presents the neural process objective LNP as an appropriate objective that we can use to
approximate the posterior prediction map πf . In this section and the following sections, all
results assume Assumptions 3.2 and 3.5.

The goal of prediction map approximation is to approximate the posterior prediction map
πf with a simpler, more tractable prediction map π. The posterior prediction map πf is
associated to some observation noise σf . We will therefore also associate our approximation
with some observation noise σ > 0. This means that uncertainty in predictions by πf and
π are a sum of two components: uncertainty about the ground-truth stochastic process f ,
represented by the variances of πf and π, and observation noise, represented by σf and
σ. These two uncertainties are fundamentally different, because only the former can be

35

reduced by observing more data. We therefore call the former epistemic uncertainty and
the latter aleatoric uncertainty. One potential issue is that an approximation π of πf might
conflate epistemic and aleatoric uncertainty. We will return to this issue in Section 3.4.

Since our approximation π is associated to some observation noise σ, we call the tuple
(π, σ) a noisy prediction map. We now formalise the space of noisy prediction maps.

Definition 3.9 (Noisy prediction maps). CallM =M× (0,∞) the collection of noisy
prediction maps. Similarly defineMc = Mc × (0,∞). Note thatMc ⊆ M. EndowM
andMc with the following topology of pointwise convergence: (πi, σi)i≥1 converges to (π, σ)

whenever (1) Pxπi(D)⇀ Pxπ(D) for all x ∈ I and D ∈ D and (2) σi → σ.

Fox example, under Definition 3.9, a function g :M→ R on the space of noisy prediction
maps is continuous if Pxπi(D) ⇀ Pxπ(D) for all x ∈ I and D ∈ D and σi → σ imply
that g(πi, σi)→ g(π, σ). Having defined the space over which we will optimise the neural
process objective, we are now in a position to formally define LNP.

Definition 3.10 (The neural process objective). Call the function

LNP :M→ [0,∞], LNP(π, σ) = Ep(D)p(x)[KL(P
σf
x πf (D), P σ

x π(D))] (3.16)

the neural process objective.

It is not at all clear that the expectations in Definition 3.10 are well defined. The following
proposition addresses this. Proposition 3.11 looks innocent, but its proof unfortunately is
considerably technical.

Proposition 3.11. The neural process objective LNP is well defined.

Proof. See Appendix A.2.

We next show that LNP is lower semi-continuous. It is also true that LNP is convex, which
follows directly from convexity of the Kullback–Leibler divergence (Lemma 7.2; Gray, 2011)
and linearity of expectation, but we will not need this property.

Proposition 3.12. The neural process objective LNP is lower semi-continuous.

Proof. See Appendix A.2.

We finally arrive at Proposition 3.13. Modulo a few caveats, Proposition 3.13 states that
(πf , σf) is the unique minimiser of LNP over all noisy prediction maps. Unfortunately,
minimisingLNP over all possible noisy predictionmaps is not practically feasible. Instead, we
could hope to approximate (πf , σf) byminimisingLNP over a tractable, large-enough class of
noisy prediction maps. This is the approach that we will consider in the next section.

36

Proposition 3.13. Assume that Ĩ ⊆ I is dense. Then (π, σ) ∈ argminMc LNP if and only if

πf |D̃ = π|D̃ and σ = σf . (3.17)

Proof. See Appendix A.2.

Note that Proposition 3.13 minimises overMc rather thanM. This restriction is necessary,
because otherwise some of the aleatoric noise σf can be absorbed in the epistemic uncer-
tainty, which means that the minimiser would not be unique. Also note that Proposition 3.13
requires Ĩ to be dense in I . In particular, this means that the target inputs of interest Ĩ must
consist of inputs of arbitrarily large size, that is, x ∈ XN for arbitrarily large N . Finally,
if D̃ = D, then note that (πf , σf) is the unique minimiser of LNP. On the other hand, if
D̃ ⊊ D, then a minimiser of LNP recovers the posterior prediction map πf only on D̃. This
means that the collection of data sets of interest D̃ determines the approximation properties
of minimisers of LNP.

3.4 Neural Process Approximations

Having formally defined the neural process objective LNP (Definition 3.10), we turn our
attention to the problem of approximating the posterior prediction map (πf , σf) with a
simpler, more tractable prediction map (π, σ). We will form such an approximations by
first defining a variational family Q ⊆M (Definitions 3.14, 3.22 and 3.23). A variational
family Q is intended to consist of simpler, more tractable candidate approximations. An
approximation of (πf , σf) can then be obtained by minimising the neural process objective
LNP over the variational family Q (Definitions 3.15, 3.24 and 3.25). Different variational
families define different classes of neural processes and we will call the associated minimisers
neural process approximations. This means that neural process approximations formalise
what different classes of neural processes precisely target. Importantly, not all neural pro-
cesses target the same approximation (Propositions 3.26 and 3.27). Analysing the properties
of neural process approximations is a way to understand the behaviour of neural processes
in practice.

Definition 3.14 (Variational family, neural process). A variational family Q ⊆ M is a

collection of noisy prediction maps. Variational families are also called neural processes.

Definition 3.15 (Neural process approximation). A neural process approximation is the

collection of minimisers of the neural process objective LNP over a variational family.

Figure 3.1 illustrates how all objects we have defined thus far connect.

37

M

Q

πM

π∞ πf

M →∞

what you want

what you
compute

the neural process
approximation

(the best you can do)

Figure 3.1: Connection between the posterior prediction map πf (Definition 3.1), a neural process
approximation π∞ (Definition 3.15), and what you compute in practice πM . Shows the collection
of all noisy prediction mapsM (Definition 3.9) and a variational family Q of a neural process
(Definition 3.14). For this variational family, shows a minimiser πM ∈ argminQ LM of the empirical
neural process objective LM (Definition 2.2) and a minimiser π∞ ∈ argminQ LNP of the neural
process objective LNP (Definition 3.10). In the figure, distance is as measured by the neural process
objective LNP. The idea is that what you compute in practice πM converges to the neural process
approximation π∞ in the limit of infinite dataM →∞.

The class of neural processes originally presented by Garnelo et al. (2018a) will be repres-
ented by the variational family QG,MF called the collection of conditional neural processes
(CNPs; Definition 3.22). CNPs are prediction maps which map to Gaussian processes that
do not model dependencies between different function values. This section also presents a
new class of neural processes QG called the collection of Gaussian neural processes (GNPs;
Definition 3.23). Contrary to CNPs, GNPs are prediction maps which map to Gaussian
processes that do model dependencies between different function values. The following
definitions set up the notation that we will use to define CNPs and GNPs.

Definition 3.16 (Gaussian process). Let PG be the collection of processes in P which are

Gaussian.

Definition 3.17 (Gaussian prediction map). Call a prediction map π : D → PG Gaussian if

it maps to PG.

Definition 3.18 (Mean map). For any prediction map π : D → P , not necessarily Gaussian,

define the mean mapmπ by

mπ : D → YX , mπ(D) = x 7→ Eπ(D)[f(x)]. (3.18)

38

Definition 3.19 (Kernel map). For any prediction map π : D → P , not necessarily Gaussian,

define the kernel map kπ by

kπ : D → RX×X , kπ(D) = (x, y) 7→ covπ(D)(f(x), f(y)). (3.19)

Definition 3.20 (Variance map). For any prediction map π : D → P , not necessarily Gaus-

sian, define the variance map vπ by

vπ : D → [0,∞)X×X , vπ(D) = x 7→ varπ(D)(f(x)). (3.20)

If a prediction map πi is subscripted, for example by i, we more simply denotemi = mπi ,
ki = kπi , and vi = vπi . Similarly, for the ground-truth stochastic process f , we more simply
denotemf = mπf , kf = kπf , and vf = vπf .

We will now define the classes of conditional neural processes and Gaussian neural pro-
cesses. CNPs require the following technical condition, which we already alluded to in
Section 3.2.

Assumption 3.21. Assume that the collection of inputs x ∈ I with repeated elements is a

p(x)-null set.

Definition 3.22 (Conditional neural process; CNP). Let the collection of conditional neural
processes (CNPs) be

QG,MF =

(π, σ) ∈M

∣∣∣∣∣∣∣∣
π is Gaussian,

kπ(D)(x, y) = 0 for all x ̸= y and D ∈ D,

mπ(D) and vπ(D) are continuous for all D ∈ D

. (3.21)

Note thatQG,MF is a subset ofM rather thanMc, meaning that all prediction maps inQG,MF

map to p(x)-regular processes rather than continuous processes. This generality is necessary,
because assuming that kπ(D)(x, y) = 0 for all x ̸= y but allowing kπ(D)(x, x) > 0 can
create discontinuities of x 7→ Pxπ(D) at inputs x with repeated elements. Fortunately, this
is allowed, because we assumed that the collection of all inputs x with repeated elements
is a p(x)-null set (Assumption 3.21). It also means, however, that the mean mapsmπ and
variance maps vπ map to functions continuous only almost everywhere. We strengthen
this by assuming, in the definition of QG,MF, thatmπ and vπ map to functions continuous
everywhere.

The collection of conditional neural processes should be interpreted as the collection of

39

prediction maps which map to Gaussian processes that do not model dependencies between
different function values. Definition 3.22 makes this precise by the condition on kπ(D).
The “MF” in the subscript of QG,MF stands for “mean field” to remind the reader of this. A
conditional neural process (π, σ) is characterised by its mean map mπ, variance map vπ,
and noise variance σ.

Definition 3.23 (Gaussian neural process; GNP). Let the collection of Gaussian neural
processes (GNPs) be

QG = {(π, σ) ∈Mc : π is Gaussian}. (3.22)

Note that QG is a subset ofMc rather thanM, meaning that all prediction maps in QG

map to continuous Gaussian processes. Consequently, for all π ∈ QG, the mean mapsmπ

and kernel maps kπ map to continuous functions.

The collection of Gaussian neural processes should be interpreted as the collection of
prediction maps which map to Gaussian processes that do model dependencies between
different function values. Definition 3.23 makes this precise by allowing any continuous
kernel map, which includes ones such that kπ(D)(x, y) ̸= 0 for x ̸= y; compare this to
Definition 3.22, where kπ(D)(x, y) = 0 for all x ̸= y. A Gaussian neural process (π, σ) is
characterised by its mean mapmπ, kernel map kπ, and noise variance σ.

Having defined two variational families QG,MF and QG, we next define two classes of
neural processes approximations by minimising the neural process objective LNP over these
variational families.

Definition 3.24 (Conditional neural process approximation; CNPA). Let the collection of

conditional neural process approximations (CNPAs) be the minimisers of LNP over QG,MF.

Definition 3.25 (Gaussian neural process approximation; GNPA). Let the collection of

Gaussian neural process approximations (GNPAs) be the minimisers of LNP over QG.

The following propositions characterise CNPAs and GNPAs. Whereas Proposition 3.13
requires the assumption that Ĩ is dense in I , GNPAs and CNPAs admit weaker assumptions
on Ĩ .

Proposition 3.26 (Characterisation of CNPA). Assume that infQG,MF LNP <∞. Also assume

that Ĩ is dense in IN for some N ≥ 1. Then a noisy prediction map (π, σ) ∈ QG,MF is a CNPA

if and only if

mπ|D̃ = mf |D̃ and vπ|D̃ + σ2 = vf |D̃ + σ2
f , (3.23)

Proof. See Appendix A.3.

40

If D̃ = D, then (π, σ) ∈ QG,MF is a CNPA if and only ifmπ = mf and vπ + σ2 = v2f + σ2
f .

This means that a CNPA is not unique: for every σ ∈ (0, σf], choosing vπ = v2f + σ2
f − σ2

gives a CNPA. On the other hand, if D̃ ⊊ D, then a CNPA recoversmf and vf + σ2 only on
D̃. We therefore see that D̃ determines the approximation properties of CNPAs.

Proposition 3.26 requires that Ĩ is dense in IN for some N ≥ 1. This means that a CNPA
can be found even if the target set size is only one.

Proposition 3.27 (Characterisation of GNPA). Assume that infQG LNP <∞. Also assume

that Ĩ is dense in IN for some N ≥ 2. Then a noisy prediction map (π, σ) ∈ QG is a GNPA if

and only if

mπ|D̃ = mf |D̃, kπ|D̃ = kf |D̃, and σ = σf . (3.24)

Proof. See Appendix A.3.

If D̃ = D, then (π, σ) ∈ QG is then a GNPA if and only ifmπ = mf , kπ = kf , and σ = σf .
In particular, a GNPA is unique, so we may speak of the GNPA. On the other hand, if D̃ ⊊ D,
then a GNPA recoversmf and kf only on D̃. We therefore see that D̃ also determines the
approximation properties of GNPAs.

Proposition 3.27 requires that Ĩ is dense in IN for some N ≥ 2. Hence, to find a GNPA, one
must consider target set sizes of at least two. This is a stronger requirement than for the
CNPA, where one can consider target set sizes of just one.

If we interpret the meanmap as the “first moment” of a prediction map and the kernel map as
the “second moment”, then the Gaussian neural process approximation moment matches the

posterior prediction map. Such behaviour has previously been noted by Ma et al. (2018). One
might wonder whether moment matching the posterior prediction map yields a prediction
map which maps to continuous processes. As the following proposition shows, the GNPA
inherits Lp-Hölder regularity from the posterior prediction map (Assumption 3.5), but with
p = 2. In particular, this means that the GNPA indeed maps to continuous processes.

Proposition 3.28 (Regularity of GNPA). Let (π, σ) ∈ QG be a Gaussian neural process

approximation. Then, for all data sets D ∈ D̃,

∥f(x)− f(y)∥L2(π(D)) ≤ cD|x− y|β whenever |x− y| < r, (3.25)

where cD > 0 is the constant from Proposition 3.8.(1) and the Hölder exponent β ∈ (1
p
, 1] and

radius r > 0 are from Assumption 3.5.

Proof. See Appendix A.3.

41

We have seen that the GNPA is unique, but CNPAs are not: CNPAs define a range of
solutions by absorbing part of the observation noise σf in the variance map. This high-
lights a fundamental distinction between Gaussian neural processes and conditional neural
processes. Since Gaussian neural processes model dependencies between function values,
they are able to correctly separate epistemic and aleatoric uncertainty. Conditional neural
processes, on the contrary, do not model these dependencies, and consequently they are
unable to separate epistemic and aleatoric uncertainty; they can only identify the sum of
the two. We will further compare GNPs and CNPs in Section 5.5.

3.5 Consistency

In the previous section, we defined two approximations of the posterior prediction map πf
by minimising the neural process objective LNP over two different variational families Q
(Definitions 3.22 and 3.23). Unfortunately, in practice, we cannot compute either of these
approximations, because we do not have access to LNP. Although we cannot compute LNP

exactly, we can compute a Monte Carlo approximation of it:

LM(π, σ) = − 1

M

M∑
m=1

log qθ(y
(t)
m |x(t)

m, D
(c)
m) + constant. (3.26)

We earlier defined this Monte Carlo approximation as the empirical neural process objective
(Definition 2.2), which is the objective originally proposed by Garnelo et al. (2018a). To
approach either of the approximations, it seems reasonable that we could minimise LM
over the variational family Q, and hope that the minimiser converges to the minimiser of
LNP asM →∞, a property called consistency. See also the illustration in Figure 3.1.

Sadly, for the variational families QG,MF and QG we introduced in Definitions 3.22 and 3.23,
consistency does not hold. To see this, simply note that (3.26) can be made arbitrarily small
by settingmπ(D

(c)
m)(x

(t)
m) = y(t)

m and making the variance sufficiently small. We can always
pick suchmπ, because the variational families requiremπ to only be continuous and map
to continuous functions, which means that we can arbitrarily choose the value of mπ at
any finite number of points. What is essentially happening is that (3.26) is optimised over
the collection of all continuous functions, which is too large, because a continuous function
can always fit a data set exactly! Consequently, our estimator will overfit.

To combat overfitting, we must constrain our variational family Q to a smaller family
Q̃ ⊆ Q such that estimation with Q̃ is consistent and, crucially, minimising LM over Q̃
still gives the desired neural process approximation. As we will discuss shortly, a sufficient
condition for Q̃ to be appropriately small is that Q̃ be compact in an appropriate topology.

42

In this section, we will show that there exist reasonable assumptions and a compact Q̃ such
that, for any ground-truth stochastic process satisfying these assumptions, the CNPA and
GNPA are contained in Q̃. For the moment, let us very roughly compareQ to Rn. Then the
sought-after neural process approximation would be some z ∈ Rn. An appropriate choice
for Q̃ is then apparent: just take Q̃ to be the equivalent of [−M,M]n for large enough
M > 0. Namely, [−M,M]n is compact and eventually captures all of Rn as M → ∞.
While this idea is promising, the analogy is flawed: Q is infinite dimensional, so, unlike
Rn, a sequence of compact sets which eventually capture all of Q does not exist. In more
technical terms, every infinite-dimensional topological vector space is not locally compact

(Theorem 1.22; Rudin, 1991). Therefore, it is not at all clear that we can find an appropriate
Q̃. The main result of this section, however, is that we can (Proposition 3.33), leading us to
consistency results for neural processes (Propositions 3.34 and 3.35).

To establish consistency of an estimator of a neural process approximation, we will follow
Wald’s (1949) proof of consistency of maximum-likelihood estimators. At the heart of
Wald’s approach lies compactness of the parameter space. As we revealed in the previous
paragraph, in our setting, this means that we require compactness of the variational family

Q. In particular, this means that we require a topology on Q, and this topology must be
carefully selected. For example, consider all mean maps associated to noisy prediction
maps in QG. Then a candidate topology would be the initial topology generated by {mπ 7→
mπ(D)(x) : D ∈ D,x ∈ I}. This topology is problematic, because it admits “too large”
compact sets. As a result, optimising (3.26) over a set compact in this topology does not
constrain the optimiser enough to avoid the problem of exactly fitting the data. For example,
by Tychonoff’s theorem (Theorem 37.3; Munkres, 2000), the collection of mean functions
defined by all possible functionsD → [0, 1]X would be compact in this topology, but clearly
we cannot optimise over this collection without running the risk of overfitting!

We therefore choose a topology onQG,MF andQG which does not admit “too large” compact
sets. Henceforth, in this section, we view mean maps more simply as functionsD×X → Y
rather than functions D → YX . Similarly, we view kernel maps more simply as functions
D×X ×X → R and variance maps more simply as functions D×X → [0,∞). For mean
maps, define the supremum norm relative to D̃ as follows:

∥m1 −m2∥∞̃ = sup
D∈D̃,x∈X

|m1(D, x)−m2(D, x)|. (3.27)

Similarly define this norm for kernel maps and variance maps. For the class of conditional
neural processes QG,MF, define the metric

dG,MF((π1, σ1), (π2, σ2)) = ∥m1 −m2∥∞̃ + ∥v1 − v2∥∞̃ + |σ1 − σ2|. (3.28)

43

For the class of Gaussian neural processes QG, define the metric

dG((π1, σ1), (π2, σ2)) = ∥m1 −m2∥∞̃ + ∥k1 − k2∥∞̃ + |σ1 − σ2|. (3.29)

We will consider the topologies on QG,MF and QG induced by these metrics. Under these
metrics, a characterisation of compactness is given by the Arzelà–Ascoli theorem (Theorem
7.25; Rudin, 1976): a subset of Q of QG,MF (respectively, QG) is compact if and only if it is
closed and the associated mean maps and variance maps (respectively, kernel maps) are
equicontinuous and uniformly bounded. Equicontinuity roughly means the following: the
collection of mean maps over which we optimise the finite-sample objective may only vary

limitedly quickly. It is precisely this property that will disallow arbitrarily choosing the
value at any finite number of points to exactly fit the data.

The remainder of this section proceeds as follows. We first establish a number of reasonable
conditions. Based on these conditions, we define a compact subset Q̃ ofQG,MF (respectively,
QG). We then prove that, for any ground-truth stochastic process satisfying these conditions,
the CNPA (respectively, GNPA) is contained in Q̃. To establish these conditions, we will
concoct pathological sequences which attempt to break equicontinuity. In particular, we
want to avoid that the assumptions permit a sequence of data sets (Di)i≥1 and ground-truth
stochastic processes (fi)i≥1 such that mfi(Di) becomes arbitrarily steeply sloped at any
input. We will take this as a guiding criterion.

To begin with, for n ≥ 1, consider Dn = {(−1,−n), (1, n)}. Thenmf (Dn) will approxim-
ately interpolate (−1,−n) and (1, n), so the slope ofmf (D) at x = 0 is approximately 2n.
Hence, as n→∞, the slope ofmf (Dn) at x = 0 becomes arbitrarily large, contradicting
equicontinuity. To prevent this from happening, we must assume that the magnitude of the
observations is bounded.

Similarly, consider Dn = {(−20,−1), . . . , (−2−n,−1), (2−n, 1), . . . , (20, 1)}. Thenmf (D)

will approximately interpolate (−2−n,−1) and (2−n, 1). As n→∞, the sheer number of
observations will overwhelm the prior, somf (D) will interpolate (−2−n,−1) and (2−n, 1)

more and more closely. Hence, as n → ∞, the slope of mf (D) at x = 0 will again
become arbitrarily large. We must therefore also assume that the number of observations is
bounded.

Assumption 3.29 (Boundedness of context sets). The collection of data sets of interest D̃
satisfies

BD̃ := sup {|x| ∨ ∥y∥2 : (x,y) ∈ D̃} <∞. (3.30)

Instead of assuming that the magnitude of the observations is bounded, we could have

44

assumed that f is a bounded process. Although this alternative assumption works and is
arguably simpler, it is also more restrictive. For example, it would exclude the common
choice f ∼ GP(0, e− 1

2
(• − •)2). By assuming that only the context sets are bounded, whenever

D ∈ D̃, we can still approximate p(f |D) for unbounded f .

Finally, consider Dn = {(−2−n,−1), (2−n, 1)} and a sequence of ground-truth stochastic
processes fn with observation noises σfn = 2−n. Then, as n→∞, the observation noise
becomes smaller and smaller, somfn(Dn) will interpolate (−2−n,−1) and (2−n, 1) more
and more closely, meaning that the slope ofmfn(Dn) at x = 0 will again become arbitrarily
large. We therefore require a universal lower bound on the allowed values for σf .

Assumption 3.30 (Boundedness of noise). The observation noise σf is larger than some

universal lower bound σ > 0.

In addition to a universal lower bound σ, we will also assume that σf ≤ σ <∞ for some
universal upper bound σ. Then σf will be contained in the interval [σ, σ], which indeed is
compact.3

Our final assumption is a technical one, stating that we require a little more than the second
moment to be uniformly bounded. Note that, if p > 2, then this condition is implied by
Assumption 3.5.

Assumption 3.31 (Boundedness of ground-truth stochastic process). There exists a univer-

sal γ > 0 such that

Bf := sup
x∈X
∥f(x)∥L2+γ <∞. (3.31)

We collect the parameters of all assumptions thus far in a tuple U called the universal

parameters.

Definition 3.32 (Universal parameters). The universal parameters U are the parameters

defined in Assumptions 3.5 and 3.29 to 3.31:

U = (p, β, c, r, γ, Bf , BD̃, σ). (3.32)

Henceforth, when we say that an object exists universally, we mean that it depends only on
the universal parameters and nothing else. We now come to the first result of this section,
which says that the mean map and the kernel map of the posterior prediction map satisfy a

3 This upper bound can likely be made redundant by considering the compactification [σ,∞]. See Example
5.16 by van der Vaart (1998) for an illustration of how Wald’s proof can be applied to a non-compact
parameter space by “adding −∞ and∞”. The upper bound is therefore mainly for technical convenience.

45

Hölder condition. Crucially, the Hölder constants and exponents are universal, meaning
that they only depend on the universal parameters.

Proposition 3.33 (Regularity of posterior prediction map, part two).

(1) There exist universal constants cm > 0 and ck > 0 such that, for any two D1, D2 ∈ D̃,
whenever dD(D1, D2) < 1, then

sup
x∈X
|Eπf (D1)[f(x)]− Eπf (D2)[f(x)]| ≤ cm dD(D1, D2)

2+2γ
3+2γ

(β− 1
p
), (3.33)

sup
x,y∈X

|Eπf (D1)[f(x)f(y)]− Eπf (D2)[f(x)f(y)]| ≤ ck dD(D1, D2)
γ

1+γ
(β− 1

p
). (3.34)

(2) Consequently, for any D1, D2 ∈ D̃ and x, y ∈ X , whenever dD(D1, D2) < 1, |x1 −
x2| < r, and |y1 − y2| < r, then

|Eπf (D1)[f(x1)]− Eπf (D2)[f(x2)]| ≤ cm dD(D1, D2)
2+2γ
3+2γ

(β− 1
p
) +

c

cℓ
|x1 − x2|β (3.35)

and

|Eπf (D1)[f(x1)f(y1)]− Eπf (D2)[f(x2)f(y2)]|

≤ ck dD(D1, D2)
γ

1+γ
(β− 1

p
) +Bf

c

c2ℓ
|x1 − x2|β +Bf

c

c2ℓ
|y1 − y2|β, (3.36)

where cℓ > 0 is a universal constant from Lemma A.4.

Proof. See Appendix A.4.

Proposition 3.33.(2) states thatmf , kf , and vf satisfy particular universal Hölder conditions.
Let Hm, Hk, and Hv be the collections of respectively all mean maps, kernel maps, and
variance maps satisfying these universal Hölder conditions. We now use these collections
to define our desired compact variational family Q̃. Define the subfamilies Q̃G,MF ⊆ QG,MF

and Q̃G ⊆ QG as follows:

Q̃G,MF = {(mπ, vπ, σ) ∈ QG : mπ ∈ Hm, vπ ∈ Hv, σ ∈ [σ, σ]}, (3.37)

Q̃G = {(mπ, kπ, σ) ∈ QG : mπ ∈ Hm, kπ ∈ Hk, σ ∈ [σ, σ]}. (3.38)

By construction, (mf , vf , σf) ∈ Q̃G,MF and (mf , kf , σf) ∈ Q̃G. Crucially, by the Hölder
conditions, the variational families Q̃G,MF and Q̃G are closed, equicontinuous, and uniformly
bounded, which means that they are compact! We have therefore arrived at our desired
consistency result.

46

Recall the metric dG,MF on Q̃G,MF defined in (3.28) and the metric dG on Q̃G defined in
(3.29). By oP(1), we denote a random variable that converges to zero in probability as
M →∞. In the following statements, oP(1) is models noise deriving stochastic optimisation
procedures.

Proposition 3.34 (Consistency of CNPA). Assume that Ĩ is dense in IN for some N ≥ 1,

and assume that supx∈Ĩ |x| <∞. Let (πM , σM) ∈ Q̃G,MF be such that

LM(πM , σM) ≤ infQ̃G,MF
LM + oP(1). (3.39)

Then, asM →∞, the distance of (πM , σM) to the closest CNPA converges to zero in probability.

Proof. See Appendix A.4.

Proposition 3.35 (Consistency of GNPA). Assume that Ĩ is dense in IN for some N ≥ 2,

and assume that supx∈Ĩ |x| <∞. Let (πM , σM) ∈ Q̃G be such that

LM(πM , σM) ≤ infQ̃G
LM + oP(1). (3.40)

Then, asM →∞, the distance of (πM , σM) to the GNPA converges to zero in probability.

Proof. See Appendix A.4.

We end our discussion of consistency of neural processes with a remark on the mode of
convergence for Gaussian neural processes. Consider a GNPA π ∈ Q̃G and let D ∈ D̃
be some data set. Proposition 3.35 gives convergence in dG, which in turn implies that
PxπM(D)⇀ Pxπ(D) for all x ∈ I . For estimating expectations of functions which depend
on only finitely many function values, e.g. Eπ(D)[L(f(x))] where L is continuous and
bounded, this mode of convergence is appropriate. However, we might want to estimate
expectations of functions which depend on the entire realisation, like the position of the
maximum: Eπ(D)[argmaxx∈X f(x)]. To estimate such expectations, we require a stronger
mode of convergence, namely πM(D)⇀ π(D). Conveniently, again owing to the universal
Hölder condition, PropositionA.8 inAppendix A.4 combinedwith Theorem 7.5 by Billingsley
(1999) show that Pxπi(D)⇀ Pxπ(D) for all x ∈ I in fact implies that πi(D)⇀ π(D).

3.6 Conclusion

This chapter has presented a number of definitions and results collectively called prediction

map approximation. This theoretical framework allowed us to formally define and analyse
neural processes. We now summarise the main results and state the main takeaways.

47

Neural processes are various approximations of the posterior prediction map (Definition 3.1).
Although all neural processes attempt to approach the posterior prediction map, some
classes of neural processes come closer than others. In particular, in the limit of infinite data,
different classes of neural processes approach different objects. We call the object that a
class of neural processes approaches a neural process approximation (Definition 3.15).

The class of neural processes first proposed by Garnelo et al. (2018a) is the class of conditional
neural processes (Definition 3.22). Conditional neural processes have Gaussian predictions
which do not model dependencies. In the limit of infinite data, conditional neural processes
approach a conditional neural process approximation (Definition 3.24). A conditional neural
process approximation recovers the mean map (Definition 3.18) of the posterior prediction
map (Proposition 3.26). It also recovers the sum of the variance map (Definition 3.20) and the
observation noise. A conditional neural process approximation, however, cannot separate
the two. We therefore say that conditional neural processes fails to separate epistemic and
aleatoric uncertainty.

In addition to conditional neural processes, we introduced the class of Gaussian neural

processes (Definition 3.23). Gaussian neural processes have Gaussian predictions which
do model dependencies. In the limit of infinite data, Gaussian neural processes approach
the Gaussian neural process approximation (Definition 3.25). The Gaussian neural process
approximation recovers the mean map, kernel map (Definition 3.19), and observation noise
of the posterior prediction map (Proposition 3.27). In particular, Gaussian neural processes
are able to separate epistemic and aleatoric uncertainty. Because the Gaussian neural process
approximation recovers the mean map and kernel map, we also say that the Gaussian neural
process approximation moment matches the posterior prediction map.

In practice, neural processes are learned by maximising the probability of the target sets
under the predictions given the context sets (Garnelo et al., 2018b). We can consider this
objective in the limit of infinite data. We call this infinite-data objective the neural process
objective (Definition 3.10). Neural process approximations, the infinite-data limits of neural
processes, are minimisers of the neural process objective (Definitions 3.15, 3.24 and 3.25).
To successfully deploy a neural process, we want what we compute in practice to converge
to the minimiser of the neural process objective. We call this property consistency.

First, to achieve consistency, in the general case the target inputs must be of arbitrarily large
size (Proposition 3.13). This is not practical. Conditional and Gaussian neural processes
relax this requirement. To approximate the Gaussian neural process approximation, it
suffices to consider target inputs of size just N , as long as N ≥ 2 (Proposition 3.27); and to
approximate a conditional neural processes approximation, one may even consider target
inputs of size only one (Proposition 3.26).

48

Second, to achieve consistency, we must prevent overfitting. Overfitting happens if the
neural process is arbitrarily flexible. To prevent overfitting, the appropriate technical notion
is that the variational family of the neural process must be compact (Section 3.5). By
making reasonable assumptions about the data and the ground-truth stochastic process
(Assumptions 3.29 to 3.31), for conditional and Gaussian neural processes, compactness can
reasonably be satisfied. This, in turn, guarantees consistency of conditional and Gaussian
neural processes (Propositions 3.34 and 3.35).

Our investigation shed light on some of the more subtle issues concerning neural processes.
However, many important questions still remain unsolved. To begin with, although we
established a consistency result for conditional and Gaussian neural processes, the more
important question is how much data we need, quantitatively, to come sufficiently close
to the neural process approximations. Additionally, the aleatoric noise has been Gaussian
and homogeneous. It would be more realistic to generalise this to non-Gaussian and
heterogeneous noise. As long as the noise distribution satisfies reasonable conditions and the
parameters vary continuously with the input, this generalisation should work out. Finally,
in practice, we do not optimise over the compact family proposed by Section 3.5, but use
neural networks. Although we will not hope to achieve finite-sample guarantees for neural
networks, perhaps the proposed compact family can be better connected with practice.

49

4 | Representation Theorems

Abstract. In Section 2.4, we saw that neural processes approach a meta-learning problem
by parametrising a prediction map πθ : D → Q using an encoder–decoder architecture. In
this chapter, we will see how encoder–decoder architectures can be motivated theoretically
with representation theorems. In the context of neural processes, representation theorems
say that prediction maps may be decomposed as encoder–decoder architectures without
losing representational power.

Outline. In Section 4.1, we introduce representation theorems; and in Section 4.2, we
introduce functions on data sets. Then, in Section 4.3, we review a basic but important
representation theorem called deep sets (Zaheer et al., 2017; Edwards et al., 2017; Wagstaff
et al., 2019). In Section 4.4, we present an extension of deep sets called convolutional deep

sets. Convolutional deep sets incorporate translation equivariance. Finally, in Section 4.5,
we generalise translation equivariance to diagonal translation equivariance and present a
generalisation of convolutional deep sets to this symmetry.

Attributions and relationship to prior work. Theorem 4.8 was first presented as
Theorem 1 by Gordon, Bruinsma, Foong, Requeima, Dubois, and Turner (2020). The proof
for Theorem 1 was originally developed by the author and Jonathan Gordon and later
improved by Andrew Y. K. Foong. We furthermore acknowledge David Burt and Mark
Rowland for reviewing the proof. Theorem 4.9 was first presented as Theorem E.1 by
Bruinsma, Requeima, Foong, Gordon, and Turner (2021c). The proof of Theorem E.1 was
originally developed by the author and James Requeima and later checked by Jonathan
Gordon and Andrew Y. K. Foong. All work was supervised by Richard E. Turner.

4.1 Introduction

As we discussed in Section 2.4, designing a neural process involves parametrising a pre-
diction map πθ : D → P . In parametrising a prediction map, we argued that there are two
main challenges. First, data sets vary in number of data points, which means that πθ must
process inputs of varying dimensionality. Second, data sets with different orderings of the
data points are fundamentally the same, which means that πθ(D) should not depend on
an ordering of the elements in D. We then argued that these challenges can be addressed

50

by parametrising πθ with an encoder–decoder architecture. Encoder–decoder architectures
decompose πθ = decθ ◦ encθ into an encoder and decoder. The encoder does not depend on
the order of the elements and produces an encoding that always has the same format. In
Section 4.3, we will review deep sets, which is a representation theorem proved by Zaheer
et al. (2017) that motivates the encoder–decoder architecture on a theoretical level.

In the context of neural processes, the study of representation theorems more generally
means the study of functions on data sets D → Z , where Z is some codomain. The
supposition of this study is that we would like to efficiently represent such functions on
a computer. The main problem, as have seen, is that it is not at all clear how to do that,
due to the structure of D. Representation theorems provide general decompositions of
functions D → Z without losing representational power. Importantly, if the components
of this decomposition can be implemented on a computer, then the theorems provide
ways to generally implement functions D → Z on a computer. In particular, by applying
representation theorems to prediction maps, we find ways to concretely parametrise and
implement prediction maps on a computer. The application of representation theorems to
prediction maps will be what we focus on in the next chapter, Chapter 5. In this chapter,
we take a step back from the neural process setup and more generally consider the study of
functions on data sets. Wewill, however, remain to use the language of “encoder”, “encoding”
and “decoder” to smoothly transition back in the next chapter.

In practice, the components of a representation theorem will be implemented with neural
networks. For the neural network to be able to approximate these components, the compon-
ents must be continuous (Cybenko, 1989). For this reason, representation theorems always
guarantee that their components are continuous. Without the requirement of continuity,
more powerful statements are possible, but these statements are of little practical utility
(Section 3; Wagstaff et al., 2019). Before proceeding to our study of representation theorems,
we first more carefully define functions on data sets.

4.2 Functions on Data Sets

For simplicity, like in the previous chapter, we will assume that the inputs and outputs are
one-dimensional: X ⊆ R and Y ⊆ R. All results, however, may readily be extended to
multidimensional inputs and outputs.

In our developments up to this point, a data setD ∈ DN has been an element of (X ×Y)N .
In particular, D is associated to an ordering of the input–output pairs. However, two
data sets with different orderings of the data points are fundamentally the same. To
this end, we will consider data sets equal if their input–output pairs are equal up to a

51

permutation, which we now formalise. For a permutation σ ∈ SN and vector z ∈ RN ,
denote σz = (zσ(1), . . . , zσ(N)). For a data set D = (x,y) ∈ DN , denote σD = (σx, σy).
Then define the equivalence relation ∼ by D1 ∼ D2 whenever there exists a permutation
σ ∈ SN such that σD1 = D2. Denote the equivalence class of D by [D], and denote the
collection of all equivalence classes of DN by [DN] = DN/∼. An element [D] ∈ [DN]
represents a data set that does not depend on the ordering of the data points. Like before, let
[D] =

⋃
N≥0[DN] be the collection of all data sets of finite size, which includes the empty

set ∅. In this chapter, we additionally let [D≤N] =
⋃N
n=0[Dn] be the collection of all data

sets of size at mostN , again including the empty set∅. More generally, for a subset A ⊆ D,
denote [A] = {[D] : D ∈ A}. We then have the following definition.

Definition 4.1 (Function on data sets). A function on data sets f is a function f : [D]→ Z ,

for some codomain Z .

An example of a function on data sets is the function which computes the average observed
value:

f : [D]→ R, f([D]) =

|x|∑
n=1

yn. (4.1)

We will be concerned with continuity of functions on data sets, which means that we must
endow [D] with a topology. We previously endowed D with the metric

dD(D1, D2) =

∥x1 − x2∥2 + ∥y1 − y2∥2 if |x1| = |x2|,

∞ otherwise.
(4.2)

For a data set D, let |D| denote the number of data points. Endow [D] with the following
metric:

d[D]([D1], [D2]) = inf
σ2∈S|D2|

dD(D1, σ2D2). (4.3)

We collect some basic results in the following proposition. Call a set A ⊆ D permutation

invariant if D ∈ A implies that σD ∈ A for all permutations σ ∈ S|D|.

Proposition 4.2.

(1) The function d[D] is a metric on [D].

(2) If A ⊆ D is open, then [A] is open in the topology of d[D].

(3) If A ⊆ D is closed and permutation invariant, then [A] is closed in the topology of d[D].

(4) The topology on [D] induced by d[D] coincides with the quotient topology.

Proof. See Appendix B.1.

52

For Propositions 4.2.(2) and 4.2.(3), since the topology on [D] induced by d[D] coincides with
the quotient topology, [A] is also respectively open and closed in the quotient topology.

Call a function f : D → Z permutation invariant if f(σD) = f(D) for all σ ∈ S|D|. We
then have the following result.

Proposition 4.3. Suppose that f : D → Z is continuous and permutation invariant. Then

[f] : [D]→ Z defined by [f]([D]) = f(D′) for anyD′ such thatD′ = [D] is well defined and

continuous. Conversely, suppose that [f] : [D]→ Z is continuous. Then f : D → Z defined by

f(D) = [f]([D]) is continuous and permutation invariant.

Proof. See Appendix B.1.

Proposition 4.3 says that it does not matter whether we study continuous functions on D
which are permutation invariant or continuous functions on [D]; they are essentially the
same. Therefore, in this chapter, we will confine ourselves to continuous functions on [D]
and will not be concerned with the notion of permutation invariance.

Qi et al. (2017) investigate functions on sets rather than on data sets. In this more general
setting, Qi et al. use the Hausdorff distance to measure distance between sets. In our case,
the collection of all data sets [D] has more structure, because it is a quotient by a group of
isometries. This structure allows us to employ the infimum-based metric in (4.3); in general,
such a definition might violate the triangle inequality. In this light, Proposition 4.2.(4) is a
specialisation of Theorem 2.1.(ii) by Cagliari et al. (2015) to [D].

4.3 Deep Sets

The starting point of our study of functions on data sets is the following theorem by Zaheer
et al. (2017), which characterises functions on [DN].

Theorem 4.4 (Deep set, preliminary; Zaheer et al., 2017). Assume that X ⊆ R and Y ⊆ R
are compact. A map π : [DN]→ Z is continuous if and only if it is of the form

π = dec ◦ enc where enc(D) =
∑

(x,y)∈D

ϕ(x, y) (4.4)

with enc : [DN] → R2(N+1), ϕ : X × Y → R2(N+1), and dec : R2(N+1) → Z continuous.

Moreover, the choice of enc and ϕ do not depend on π.

Proof. See the proof of Theorem 2 by Zaheer et al. (2017).

Thoughout this thesis, we will call functions of the form of (4.4) deep sets. In terms of
encoders, note that deep sets encode on two levels. For every data point (x, y) ∈ D, first

53

ϕ(x, y) produces an encoding of that data point. These data-point-specific encodings are
then summed over all data points in the data set, finally producing an encoding of the
whole data setD. Although Theorem 4.4 was originally presented by Zaheer et al. (2017), in
concurrent work Edwards et al. (2017) employed a similar approach for a similar problem.
Theorem 4.4 is also comparable to Theorem 1 by Qi et al. (2017). Theorem 1 by Qi et al.
(2017) uses a maximum instead of a sum for enc and characterises function continuous with
respect to a different topology.

To prove Theorem 4.4, Zaheer et al. proceed by defining

ϕ(x, y) = (x0, x1, . . . , xN+1, y0, y1, . . . , yN+1). (4.5)

Indeed, ϕ(x, y) is of dimensionality 2(N +1). It is clear that enc is continuous. The key step
is to show that enc : [DN]→ R2(N+1) is also injective, which means that it always maps two
different [D1] ∈ [DN] and [D2] ∈ [DN] to distinct encodings. Zaheer et al. show this in their
Lemma 4. Having shown that ϕ is a continuous injection, it follows that it is a continuous
bijection from onto its image enc([DN]). The fact that we now use is that all continuous
bijections A→ B with A compact and B Hausdorff have a continuous inverse (Theorem
26.6; Munkres, 2000). Since [DN] is compact, we may conclude that ϕ : [DN] → ϕ([DN])
has a continuous inverse ϕ−1. Theorem 4.4 then follows by setting dec = π ◦ ϕ−1.

Theorem 4.4 has an important limitation: it only applies to data sets of a single fixed size N .
Wagstaff et al. later extended Theorem 4.4, addressing this restriction:

Theorem 4.5 (Deep set; Zaheer et al., 2017; Wagstaff et al., 2019). Assume that X ⊆ R and

Y ⊆ R are compact. A map π : [D≤N]→ Z is continuous if and only if it is of the form

π = dec ◦ enc where enc(D) =
∑

(x,y)∈D

ϕ(x, y) (4.6)

with enc : [DN] → R2N , ϕ : X × Y → R2N , and dec : R2(N+1) → Z continuous. Moreover,

the choice of enc and ϕ do not depend on π.

Proof. See the proof of Theorem 4.4 by Wagstaff et al. (2019).

Compared to Theorem 4.4, there are two differences. First, in Theorem 4.5, ϕmaps into R2N

rather than R2(N+1). Wagstaff et al. make this improvement by noting that the elements
x0 and y0 in (4.5) are always one and can therefore be removed. Second, in Theorem 4.5,
the theorem applies to any function on [D≤N] rather than [DN]. This means that it applies
to all data set of size at most N , addressing the aforementioned limitation of Theorem 4.4.
Wagstaff et al. make this improvement by designating a special element in R \ X . Let us

54

denote this special element by missing ∈ R \ X . Using missing, any data set D ∈ DN ′ with
N ′ < N can be made a data set of N data points by appending the appropriate number of
missings. In this way, D≤N can be embedded into the collection of data sets with N data
points with inputs in X ∪ {missing} and outputs in Y ∪ {missing}. Since X ∪ {missing}
and Y ∪ {missing} are still compact, Theorem 4.4 can be applied.

Theorem 4.5 is an important result, because it provides a way to concretely parametrise a
map π : [D≤N]→ Z on a computer, supposing that Z is some Euclidean space. Namely, in
(4.6), the components ϕ and dec are just continuous functions between Euclidean spaces,
which can therefore be approximated with multi-layer perceptrons (Cybenko, 1989).

4.4 Convolutional Deep Sets

Although Theorem 4.5 provides a way to generally implement a map π : [D≤N]→ Z , this
implementation requires two multi-layer perceptrons: one for ϕ, and one for dec. Although
multi-layer perceptrons (MLPs) can approximate any continuous function (Cybenko, 1989),
in some domains, MLPs are so parameter inefficient that they cannot feasibly be used. One
such domain is images. Consider a 100× 100 image, consisting of three colour channels.
Then a one-layer MLP mapping to an image of the same size would consist of nearly a
billion parameters, which is on the order of the biggest models that can nowadays be
trained (Brown et al., 2020). Specifically for the domain of images, convolutional neural
networks (CNNs) were developed (Fukushima et al., 1982), which are MLPs with certain
weights set to zero. In comparison, a one-layer CNN mapping a 100 × 100 image with
three colour channels to an image of the same size may only consist of only 81 parameters.
CNNs achieve this parameter efficiency by incorporating a symmetry called translation

equivariance. Recall that, in Definitions 2.3 and 2.4 in Section 2.5, we defined translations and
translation equivariance. We also explained the intuition behind translation equivariance.
In this section, we present a translation-equivariant version of deep sets (Theorem 4.5)
called convolutional deep sets (Theorem 4.8). As the name suggests, convolutional deep sets
are to deep sets what CNNs are to MLPs. In particular, convolutional deep sets inherit the
parameter efficiency of CNNs.

In this section, for simplicity, we still assume one-dimensional inputs and outputs, and
we emphasise again that all results readily generalise to higher-dimensional inputs and
outputs. For the notion of translation equivariance to be well defined, we require that
X = R entirely. If X ⊊ R, then Tτx could shift an input outside X . As an example, if
X = [0, 1], then T 1

2
1 = 3

2
/∈ X .

Every CNN is a translation-equivariant MLP. It turns out that every MLP which is transla-

55

tion equivariant is also a CNN (Kondor et al., 2018). This means that, amongst all MLPs,
translation equivariance characterises CNNs. In a similar spirit, the main result of this
section is a characterisation of functions on data sets which are translation equivariant. Let
us for a moment contemplate such a result. Suppose that

π = enc ◦ dec where enc(D) =
∑

(x,y)∈D

ϕ(x, y) (4.7)

were translation equivariant: π ◦Tτ = Tτ ◦π for all τ ∈ X . To establish translation equivari-
ance of π, one reasonable construction would be to ensure that enc and dec are translation
equivariant. If that were true, then, by associativity of function composition,

dec ◦ enc ◦ Tτ
(enc is TE)

= dec ◦ Tτ ◦ enc
(dec is TE)

= Tτ ◦ dec ◦ enc (4.8)

which would mean that π is indeed translation equivariant. But there is a big problem with
this construction: enc is a function mapping into R2N (Theorem 4.5), and, crucially, vectors
in R2N cannot naturally be translated by translations in X = R! One way to translate a
vector in R2N is to shift along its elements, wrapping around the outermost elements:

T1(z1, z2, . . . , z2N−1, z2N) = (z2N , z1, . . . , z2N−2, z2N−1). (4.9)

This, however, only works for integer-valued translations. Another proposal might be to
simply add the translation to all elements of the vector:

Tτ (z1, . . . , z2N) = (z1 + τ, . . . , z2N + τ). (4.10)

But then what would you do for two-dimensional inputs? In general, there is no natural way
to translate vectors in R2N by X -valued translations. We therefore see that the Euclidean
space R2N in which the encoding lives is an obstacle for deriving a translation-equivariant
version of deep sets. Instead, we would like the encoding to live in a space on which
translations can naturally act. And the most natural such space is a space of functions,
which motivates the following idea.

Definition 4.6 (Functional encoding). Call an encoding functional if the output of enc and
hence the input of dec is a function on X :

enc : [D]→ ZX , dec : ZX → C (4.11)

where Z is the codomain of the functional encoding and C the codomain of the decoder.

If the encoding were functional, then translation equivariance is a perfectly well-defined

56

notion for the output of enc and the input of dec. Therefore, in that case, we could pursue the
construction of building translation equivariance into π by building it into enc and dec.

Before we state the main result, we need a few definitions. Call a spaceA a translation space
if elements in A can be translated. Call a translation space A topological if (τ, a) 7→ Tτa

is continuous. Call a subset A′ ⊂ A of a translation space A closed under translations if
a ∈ A′ implies that Tτa ∈ A′ for all τ ∈ X . Call a function k : X ×X → R (strictly) positive

definite if, for all N ∈ N and x ∈ XN , the matrix
k(x1, x1) · · · k(x1, xn)

...
k(xn, x1) · · · k(xn, xn)

 (4.12)

is (strictly) positive definite. Call a function k : X → R (strictly) positive definite if (x, y) 7→
k(x− y) is (strictly) positive definite. For a Hilbert space (H, ⟨ • , • ⟩H) of functions on X ,
call a positive-definite function k a reproducing kernel if k(• , x) ∈ H for all x ∈ X and
⟨f, k(• , x)⟩H = f(x) for all f ∈ H and x ∈ X . For every positive-definite function k, there
exists one and only one Hilbert space of functions on X for which k is a reproducing kernel
(Moore–Aronszajn theorem; Section 2; Aronszajn, 1950). We call this Hilbert space the
reproducing kernel Hilbert space (RKHS) of k. Finally, we define the multiplicity of a data set
[D] ∈ [D], which counts how many times an input is repeated exactly.

Definition 4.7 (Multiplicity of data set). For a data set [D] ∈ [D], let the multiplicity of [D]

be the maximum number of times an input is repeated exactly. Denote the multiplicity of [D]

by mult [D]. Then

mult [D] = sup {|{i ∈ [N] : xi = x}| : x ∈ {x1, . . . , xN}} where D = (x,y). (4.13)

For a subset [D′] ⊆ [D], define mult [D′] = sup[D]∈[D′] mult [D].

Theorem 4.8 (Convolutional deep set). Let Y ⊆ R be compact. Suppose that [D′] ⊆ [D] is
closed, is closed under translations, has multiplicityK , and has maximum data set sizeN <∞.

Let k : X → R be a continuous strictly-positive-definite function such that (1) k(0) = σ2 > 0

(2) k ≥ 0, and (3) k(τ)→ 0 as |τ | → ∞. Denote the reproducing kernel Hilbert space of k by

H. Let Z be a translation space. Then a function π : [D′]→ Z is continuous and translation

equivariant if and only if it is of the form

π = dec ◦ enc where enc(D) =
∑

(x,y)∈D

ϕ(y)k(• − x) (4.14)

with enc : [D′]→ H′ continuous and translation equivariant, dec : H′ → Z continuous and

57

translation equivariant, and ϕ(y) = (0, y1, . . . , yK). Here H′ = enc([D′]) is a subspace of

HK+1 which is closed and closed under translations.

Proof. The proof proceeds like the proof for Theorem 4.5. We show that enc is injective,
therefore bijective onto its image. In this case, however, the image of enc is not compact.
Instead, we use the structure of the RKHS H to prove continuity of the inverse of enc. See
Appendix B.2.

Theorem 4.8 is a characterisation of functions π : [D′]→ Z on data sets which are translation
equivariant. In the following paragraphs, we will carefully analyse various aspects of the
theorem.

A restrictive assumption of Theorem 4.8 is that the domain [D′] must be simultaneously
closed and have multiplicity K . For example, suppose that we choose [D′] to be the
data sets in [D2] with distinct inputs. Then mult [D′] = 1. However, [D′] is not closed:
[((1/n, 0), (0, 0))] ∈ [D′] for all n ≥ 1, but

lim
n→∞

[((1/n, 0), (0, 0))] = [((0, 0), (0, 0))], (4.15)

and [((0, 0), (0, 0))] has multiplicity two, so it is not in [D′]. A reasonable way to construct
subsets of [D′] which are simultaneously closed and have multiplicity K is to fix some
ε > 0, and to consider the data sets in [D′] with at mostK inputs exactly repeated and all
other inputs ε or more apart.

Like Theorem 4.5, Theorem 4.8 also lets ϕ be a power expansion (see (4.5)). However, the
highest power of ϕ in Theorem 4.5 is dictated by the maximum data set size, whereas the
highest power of ϕ in Theorem 4.8 is set by the multiplicity of [D′]. In particular, if the
multiplicity is low, then the highest power of ϕ in Theorem 4.8 is low, regardless of the
maximum data sets size.

As we alluded to before, Theorem 4.8 constructs a translation-equivariant encoder and de-
coder by employing a functional encoding (Definition 4.6). The particular function space that
the encoding lives is the (K+1)-fold product of the reproducing kernel Hilbert spaceH of a
continuous positive-definite kernel k. We are free to choose k. In Chapter 5, we will choose
k to be a simple Gaussian kernel: k(τ) = exp(− 1

2ℓ2
τ 2) for some length scale ℓ > 0.

The decoder is defined only on a subspace H′ ⊆ HK+1 which is closed and closed under
translations. It would be desirable to continuously extend the decoder to all of HK+1

whilst preserving translation equivariance. Continuously extending functions from a closed
subspace to the entire space is classically done with the Tietze extension theorem (Theorem
35.1; Munkres, 2000). The Tietze extension theorem, however, assumes that Z is a finite-

58

dimensional Euclidean space and does not preserve translation equivariance. In 1950,
Gleason extended Tietze’s theorem to preserve symmetries with respect to compact groups
by averaging over the Haar measure. The group of translations, unfortunately, is not
compact, though it is locally compact. In 1951, Dugundji extended Tietze’s theorem to
any Z which is a locally convex vector space. Later Jaworowski (1981) and more recently
Feragen (2006) proposed extensions of Tietze’s theorem which generalise in both directions.
We leave it to future work to determine whether an equivariant extension theorem can be
applied to extend the decoder from H′ to all of HK+1.

Finally, we compare the form of convolution deep sets (Theorem 4.8) to the form deep
sets (Theorem 4.5). There are two important differences. First, for deep sets, the encoder
is implemented with an MLP, and the decoder is also implemented with an MLP. For
convolutional deep sets, the encoder only depends on a choice for k, like the Gaussian
kernel. It can therefore trivially be implemented and, in particular, it does not depend on any

neural network. Additionally, the decoder is now a translation-equivariant map between
translation spaces. Crucially, such maps are exactly what CNNs approximate (Theorem 3.1;
Yarotsky, 2022)! Therefore, for convolutional deep sets, the decoder can be implemented
with a CNN. The second difference pertains to the choice of maximum data set size N . For
deep sets, the dimensionality of the encoding depends on N . For convolutional deep sets,
on the other hand, the encoding always lives in HK+1, regardless of the maximum data
set size. We could therefore imagine applying Theorem 4.8 to a sequence of Ns going to
infinity to obtain a version of convolution deep sets that holds for data sets of all sizes. We
leave such a construction for future work.

After introducing Theorem 4.8 (Gordon et al., 2020), Xu et al. (2020) also introduced func-
tional representations in the context of meta-learning for the purpose of improving rep-
resentational capacity. Whereas Theorem 4.8 uses a functional encoding, Xu et al. argue
that the encoder in Theorem 4.8 is limited. We, however, emphasise that the simplicity of
the encoder is without loss of generality, because Theorem 4.8 applies to any continuous
function [D′] → Z which is translation equivariant. The simplicity of the encoder can
therefore be seen as a feature rather than a downside.

4.5 Diagonal Translation Equivariance

Convolutional deep sets (Theorem 4.8) characterise translation-equivariant functions on
data sets. In this section, we investigate a slightly more general class: functions on data
sets which are equivariant with respect to diagonal translations. Before stating the definition
of diagonal translation equivariance (DTE), we first explain where DTE comes from.

59

In Section 3.4, we definedmean maps (Definition 3.18), functions of the formm : [D]→ YX ,
and kernel maps (Definition 3.19), functions of the form k : [D]→ RX×X . In Section 5.5, we
will encounter mean mapsm which are translation equivariant:

m ◦ Tτ = Tτ ◦m for all τ ∈ X . (4.16)

Theorem 4.8 can be used to characterise such mean mapsm. We will also encounter kernel
maps k which are translation equivariant. Kernel maps, however, turn out to be translation
equivariant in a slightly different sense:

k ◦ Tτ = T(τ,τ) ◦ k for all τ ∈ X . (4.17)

Compared to (4.16), (4.17) has T(τ,τ) on the right-hand side instead of Tτ , where T(τ,τ) is
a translation on X × X . Recall that the codomain of k consists of functions on X × X ,
not on X . Because (4.17) has different symbols on both sides, we cannot directly apply
Theorem 4.8. We will see that the symmetry in (4.17) is closely related to the notion of
diagonal translation equivariance (Definition 4.10), which we later define. The main result
of this section is a characterisation of functions which are diagonally translation equivariant

in the sense of (4.17).

Theorem 4.9 (Convolutional deep set for DTE). Let Y ⊆ R be compact. Suppose that

[D′] ⊆ [D] is closed, is closed under translations, has multiplicity K , and has maximum data

set size N <∞. Let k : X × X → R be a continuous strictly-positive-definite function such

that (1) k(0) = σ2 > 0, (2) k ≥ 0, and (3) k(τ)→ 0 as ∥τ∥2 →∞. Denote the reproducing

kernel Hilbert space associated to k by H. Let Z be a topological (X × X)-translation space.

Let C be another topological (X × X)-translation space, let c ∈ C be diagonally translation

invariant and anti-diagonal discriminating, and denote C ′ = {Tτc : τ ∈ X × X}. Then a

function π : [D′]→ Z is continuous and diagonally translation equivariant in the sense of

π ◦ Tτ = T(τ,τ) ◦ π for all τ ∈ X (4.18)

if and only if it is of the form

π = dec ◦ enc where enc(D) =

[∑
(x,y)∈C ϕ(y)k(• − (x, x))

c

]
(4.19)

with enc : [D′] → H′ × C ′ continuous and translation equivariant, dec : HK+1 → Z con-

tinuous and translation equivariant, and ϕ(y) = (0, y1, . . . , yK). Here H′ = enc([D′]) is a

subspace of HK+1 which is closed and closed under translations.

60

If C is the space of functions X ×X → R and X = R, then a simple and appropriate choice
for c is the Gaussian c(x) = exp(− 1

2ℓ2
⟨x, e⊥⟩2) for some length scale ℓ > 0. Intuitively, this

choice for c measures the distance to the diagonal and decays based on that distance.

Proof. To prove Theorem 4.9, our approach will be to first rewrite (4.18) to have T(τ,τ) on
both sides. Once (4.18) is in this form, we will apply Theorem 4.8 with X × X as the space
of inputs. Recall that Theorem 4.8 generalises to higher-dimensional inputs.

To rewrite (4.17), we use a simple trick: duplicating the inputs. Let Ddbl be the collection of
data sets with inputs in Xdbl := X × X and outputs in Y . The “dbl” in the subscript of Ddbl

stands for “double” and serves to remind the reader that there are double the number of
inputs. Let dup: D → Ddbl be the function that maps a data set into Ddbl by duplicating the
inputs. More precisely, for D = (x,y) ∈ DN ,

dup(D) = (((x1, x1), y1), . . . ((xN , xN), yN)). (4.20)

In (4.20), every input on the right-hand side has duplicated elements, so we say that such
data sets have duplicated inputs. LetDdup ⊊ Ddbl be the subset ofDdbl with duplicated inputs.
Note thatDdbl contains data sets with and without duplicated inputs. Let dup−1 : Ddup → D
be right inverse of dup: dup−1 takes in a data set with duplicated inputs and recovers the
original by deduplicating the inputs.

With these definitions, we can relate Tτ : D → D to T(τ,τ) : Ddbl → Ddbl:

Tτ = dup−1 ◦ T(τ,τ) ◦ dup. (4.21)

Define πdup := π ◦ dup−1, and note that πdup : Ddup → Z operates on data sets with
duplicated inputs. Then, by substituting (4.21) in (4.18), we find that1

πdup ◦ T(τ,τ) = T(τ,τ) ◦ πdup for all τ ∈ X . (4.31)

1 To carefully argue this, note that

T(τ,τ) ◦ π = π ◦ Tτ (apply (4.18)) (4.22)
= π ◦ (dup−1 ◦ T(τ,τ) ◦ dup) (definitions of dup and dup−1) (4.23)
= (π ◦ dup−1) ◦ T(τ,τ) ◦ dup, (4.24)

T(τ,τ) ◦ πdup = T(τ,τ) ◦ (π ◦ dup−1) (definition of πdup) (4.25)
= (T(τ,τ) ◦ π) ◦ dup−1 (4.26)
= ((π ◦ dup−1) ◦ T(τ,τ) ◦ dup) ◦ dup−1 (apply (4.24)) (4.27)
= (πdup ◦ T(τ,τ) ◦ dup) ◦ dup−1 (definition of πdup) (4.28)
= πdup ◦ T(τ,τ) ◦ (dup ◦ dup−1) (4.29)
= πdup ◦ T(τ,τ). (dup−1 is right inverse of dup) (4.30)

61

Crucially, (4.31) has T(τ,τ) on both sides, so we may try to characterise πdup by applying
Theorem 4.8 with X × X as the space of inputs! Having characterised πdup, we also find
a characterisation of π = πdup ◦ dup, which is what we are ultimately after. To apply
Theorem 4.8 with X × X as the space of inputs, however, we require πdup to be (X × X)-
translation equivariant, that is, equivariant with respect to all translations on X × X :

πdup ◦ T(τ1,τ2)
?
= T(τ1,τ2) ◦ πdup for all τ1, τ2 ∈ X . (4.32)

Unfortunately, (4.31) says that πdup is only equivariant with respect to translations along the
diagonal of the space X ×X : translations of the form T(τ1,τ2) where τ1 = τ2. This motivates
the general definition of diagonal translation equivariance.

Definition 4.10 (Diagonal translation equivariance; DTE). Consider a map π : A → B

whereA andB are (X×X)-translation spaces. Then π is equivariant with respect to diagonal
translations or diagonally translation equivariant (DTE) if

π ◦ T(τ,τ) = T(τ,τ) ◦ π for all τ ∈ X . (4.33)

If a map π is (X ×X)-translation equivariant, then it is also diagonally translation equivari-
ant. The class of DTE functions is therefore larger than the class of (X × X)-TE functions.
Whereas the previous section characterised functions on data sets which are TE, this section
characterises functions on data sets which are DTE.

Diagonal translation equivariance is intimately related to (X ×X)-translation equivariance.
In technical terms, the group of diagonal translations is a subgroup of the group of (X ×X)-
translations. We will use this relationship to derive a characterisation of DTE functions
from Theorem 4.8. The key idea is as follows. Consider a DTE map π : A → B between
(X × X)-translation spaces A and B. If π were also (X × X)-TE, then we could apply
Theorem 4.8, and we would be done. However, π is not (X × X)-TE; it is just DTE. The
idea is to make π (X × X)-TE by defining what happens for non-diagonal translations:

π(T(τ1,τ2)a) := T(τ1,τ2)π(a) for all τ1, τ2 ∈ X , τ1 ̸= τ2. (4.34)

This almost works. The problem is that (4.34) might clash with the original definition of
π: for some a ∈ A and τ1, τ2 ∈ X , T(τ1,τ2)a might equal another a′ ∈ A, and it might be
that T(τ1,τ2)π(a) ̸= π(a′). Fortunately, this problem can be circumvented, as we will now
explain.

Let C be another (X × X)-translation space, this time topological. Let e⊥ = (1,−1).
Consider c ∈ C such that, for all sequences (τi)i≥1 ⊆ Xdbl, the sequence (⟨τi, e⊥⟩)i≥1 is

62

Table 4.1: Comparison of deep sets and convolutional deep sets

Deep sets (Thms 4.4 and 4.5) Convolutional deep sets (Thms 4.8 and 4.9)

Model for Functions [D]→ Z Functions [D]→ Z which are TE
Encoder Multi-layer perceptron Given; no neural network
Encoding Vector in R2N Function in RKHS (Definition 4.6)
Decoder Multi-layer perceptron Convolutional neural network

convergent whenever (Tτi
c)i≥1 is convergent. In particular, then TτIc = TτIIc for τI, τII ∈ X

implies that ⟨τI, e⊥⟩ = ⟨τII, e⊥⟩.2 In words, by observing c, you can identify the anti-

diagonal component of a translation. We call such c anti-diagonal discriminating. Moreover,
assume that c is diagonally translation invariant (DTI), by which we mean that T(τ,τ)c = c

for all τ ∈ X . Then define the map

π : A× {c} → B, π(a, c) = π(a). (4.35)

By DTE of π and DTI of c, this map is still DTE: for all τ ∈ X :

π(T(τ,τ)a, T(τ,τ)c) = π(T(τ,τ)a, c) (c is DTI) (4.36)

= π(T(τ,τ)a) (definition of π) (4.37)

= T(τ,τ)π(a) (π is DTE) (4.38)

= T(τ,τ)π(a, c). (definition of π) (4.39)

However, crucially, c ̸= T(τ1,τ2)c for any τ1, τ2 ∈ X such that τ1 ̸= τ2, because c is anti-
diagonal discriminating. Therefore, π is undefined for any non-diagonal translation! This
means that (4.34) now goes through, and we can finally apply Theorem 4.8.

There is one final technical detail to verify, which is that the extension π needs to be
continuous. Appendix B.3 verifies this detail.

4.6 Conclusion

In this chapter, we studied theorems which characterise functions on data sets. In the
context of neural processes, we call such theorems representation theorems. The starting
point was a theorem by Zaheer et al. (2017) and Wagstaff et al. (2019) called deep sets
(Theorems 4.4 and 4.5). Deep sets generally characterise functions on data sets. In a deep
set, the encoder and decoder can be implemented with MLPs.

2 Consider the sequence (τi)i≥1 ⊆ X defined by τi = τI for i odd and τi = τII for i even.

63

The main contribution of this chapter is an extension of deep sets called convolutional deep

sets (Theorems 4.8 and 4.9). Convolutional deep sets generally characterise functions on data
sets which are translation equivariant. In a convolutional deep set, the encoder is trivially
implemented and only depends on a choice of a positive-definite function. In particular,
it does not depend on a neural network. Additionally, the decoder is implemented with a
convolutional neural network. Table 4.1 summarises the key differences between deep sets
and convolutional deep sets.

Convolutional deep sets have two important limitations. First, the approximation of the
encoder relies on a convolutional neural network with convolutions of dimensionality equal
to the dimensionality of X in the case of Theorem 4.8 and twice the dimensionality of
X in the case of Theorem 4.9. One, two, or three-dimensional convolutions have reason-
able computational expense. Convolutions of dimension four or higher, however, may be
prohibitively expensive to run. This is particularly a problem for Theorem 4.9, where the
convolutions have dimensionality twice the dimensionality of X . Theorem 4.8 can therefore
only reasonably be applied to data sets with one, two, or three-dimensional inputs and
Theorem 4.9 to data sets only with one-dimensional inputs. Second, whereas Theorems 4.8
and 4.9 characterise functions which are translation equivariant, what we might really need
is a characterisation of functions which are approximately translation equivariant. Ideally,
such a result would “interpolate” between deep sets and convolutional deep sets, depending
on how translation equivariant the function to represent would be. Van der Wilk et al.
(2018) discuss approximate invariance in the setting of Gaussian processes.

Finally, whereas we introduced functional encodings (Definition 4.6) to derive a translation-
equivariant version of deep sets, this construction can also be used to provide an alternative
proof of deep sets. Theorem 2.4 by Gordon (2020) pursues this approach, which was
developed by Jonathan Gordon in collaboration with Andrew Y. K. Foong.

64

5 | Convolutional Neural Processes

Abstract. Neural processes approach meta-learning problems by parametrising a prediction
map πθ : D → Q. In the previous chapter, we discussed representation theorems, which are
theorems that generally characterise functions on data sets D. The goal of representation
theorems is to find practical implementations of such functions. In this chapter, we apply
representation theorems to the prediction map.

Outline. In Section 5.2, we parametrise the prediction map using deep sets, recovering the
original Conditional Neural Process (CNP; Garnelo et al., 2018a). In the remaining sections,
we propose three methodological advancements. First, in Section 5.3, we parametrise the
prediction map using convolutional deep sets. Second, in Section 5.5, we propose to directly
parametrise the covariance between target outputs. Finally, in Section 5.6, we propose to
deploy CNPs in an autoregressive fashion.

Attributions and relationship to prior work. The ConvCNP was originally presented
by Gordon, Bruinsma, Foong, Requeima, Dubois, and Turner (2020), the ConvGNP by
Markou, Requeima, Bruinsma, Vaughan, and Turner (2022), and the FullConvGNP by
Bruinsma, Requeima, Foong, Gordon, and Turner (2021c). The ConvCNP is the result of
a collaboration with Jonathan Gordon, Andrew Y. K. Foong, James Requeima, and Yann
Dubois. Andrew Y. K. Foong first realised the need for a density channel, and Yann Dubois
first proposed to normalise the data channel by the density channel. The ConvGNP is a result
of a collaboration with James Requeima and Stratis Markou. James Requeima and Stratis
Markou first proposed to model the covariance with a linear kernel. The FullConvGNP
is a result of a collaboration with James Requeima, and was later checked by Jonathan
Gordon and Andrew Y. K. Foong. The idea of AR CNPs was originally proposed by Richard
E. Turner and then tried by Jonathan Gordon and Andrew Y. K. Foong, but they could not
get it to work well. All work was supervised by Richard E. Turner.

5.1 Introduction

In this chapter, we will construct a new family of neural process models called convolutional
neural processes (ConvNPs; Section 5.3). ConvNPs improve data efficiency of neural processes
by building in translation equivariance (Definition 2.4). After constructing the family of

65

ConvNPs, we will build on this family by proposing two additional new families of neural
processes: Gaussian neural processes (GNPs; Section 5.5) and autoregressive conditional neural
processes (AR CNPs; Section 5.6). As we will see, GNPs and AR CNPs address the inability
of the original class of conditional neural processes (CNPs; Garnelo et al., 2018a) to produce
coherent samples. These classes, however, do so by giving up something else. GNPs directly
parametrise dependencies between target outputs, but are limited to Gaussian predictions.
AR CNPs, on the other hand, propose to deploy CNPs in an autoregressive fashion, but are
no longer consistent meta-learning algorithms. Whereas we will focus on GNPs and AR
CNPs that are ConvNPs, the classes of GNPs and AR CNPs are more general. The families
of ConvNPs, GNPs, and AR CNPs are the three contributions of this chapter.

All models will be derived by applying an appropriate representation theorem from Chapter 4
to the prediction map πθ : D → Q. Recall that Q is a collection of stochastic processes
called the variational family. In the context of neural processes, representations theorems
generally characterise functions on data setsD. These theorems can be used to find practical
implementations of such functions (Section 4.1). Applying representation theorems to the
prediction map forms a general recipe to construct neural processes.

In Chapter 4, we studied functions on [D] rather than on D. Recall that [D] is the collection
of data sets of all sizes that do not depend on an ordering of the data points. To simplify the
notation, we will throughout denote D instead of [D], and always assume that functions on
D are permutation invariant (Proposition 4.3).

A word of caution. This chapter will feature many existing and new names of neural
processes and classes of neural processes. Please see our word of caution on naming
conventions in Section 2.2.

Before constructing any new models, we first derive the original Conditional Neural Process
(CNP; Garnelo et al., 2018a). We will analyse the strengths and shortcomings of the CNP,
propose an improvement that alleviates one shortcoming, and repeat this once more.

5.2 Conditional Neural Processes

The class of conditional neural processes (CNPs) was formally defined in Definition 3.22.
CNPs choose the variational family Q to be the collection of Gaussian processes that do
not model dependencies between target outputs. With this choice, a CNP is identified by
its mean map m (Definition 3.18) and variance map v (Definition 3.20). Recall that the
mean mapm is the map from a data set to the mean function of the predictive stochastic
process:

m : D → YX , m(D) = x 7→ Eπ(D)[f(x)]. (5.1)

66

Also recall that the variance map v is the map from a data set to the variance function of
the predictive stochastic process:

v : D → [0,∞)X , v(D) = x 7→ varπ(D)[f(x)]. (5.2)

See Section 3.4 for a more detailed description of the class of CNPs.

The Conditional Neural Process is constructed by applying the deep sets representation
theorem (Theorem 4.5) to the mean mapm and variance map v. In Theorem 4.5, the encoder
does not depend on the function that the theorem is applied to, so we can use the same
encoder for the meanmap and variance map. This gives the following parametrisation:

Model 5.1 (Conditional Neural Process; CNP; Garnelo et al., 2018a). The Conditional Neural
Process (CNP) parametrises

mθ(D) = x 7→ [decθ(z, x)]1,

vθ(D) = x 7→ [decθ(z, x)]2,

z ∈ RK ,

z =
∑

(x,y)∈D

ϕθ(x, y),

encθ(D)

where ϕθ : X × Y → RK and decθ : RK ×X → R× [0,∞) are multi-layer perceptrons.

As discussed in Section 2.4, parametrising a prediction map presents two challenges: the
data set D is of variable dimensionality, and the neural process should not depend on the
order of the data points in D. The CNP addresses these challenges by decomposing the
architecture into an encoder encθ and decoder decθ, an encoder–decoder architecture. By
summing over an encoding ϕθ(x, y) of every data point (x, y) ∈ D, the encoder of the CNP
effectively handles data sets of varying sizes. Morever, since addition is commutative, the
encoding encθ(D) does not depend on the order of the data points in D. After the encoder
produces the encoding z, the decoder takes in z and a target input x and produces the
marginal mean [decθ(z, x)]1 and marginal variance [decθ(z, x)]2 of the CNP’s prediction at
x. The decoder is the more heavyweight component of the CNP and responsible for the
majority of the representational capacity of the model.

5.3 Convolutional Conditional Neural Processes

In Figure 2.1 in Section 2.5, we saw that the Conditional Neural Process breaks down when
it is presented data outside of the training range, the part of the input space where the
model has seen data during training. In a sense, that the CNP malfunctions outside of the
training range is reasonable, because it has not seen any indicators of the behaviour of the

67

data outside the training range. For all the model knows, the data might suddenly start
exhibiting wildly erratic behaviour when it crosses the edge of the training range. We have
not baked any assumptions into the CNP that exclude such a possibility, however unlikely
it may sound.

Our goal is to improve this behaviour of the CNP, to tell the model that the data outside of
the training range behaves just like inside the training range. To this end, we will specify
that the ground-truth stochastic process f behaves similarly on all parts of the input space.
In particular, the appropriate and natural assumption is that f be a stationary process. Recall
that a process is stationary if its distribution is unaffected by shifts: f d

= Tτf for all shifts
τ ∈ X . It turns out that stationarity of the prior has a simple characterisation in terms of
the posterior prediction map.

Proposition 5.2. The ground-truth stochastic process f is stationary if and only if the posterior

prediction map πf is translation equivariant (Definition 2.4).

Proof. See Appendix C.1.

To build in the assumption that the data behaves similarly on all parts of the input space,
Proposition 5.2 reveals that the appropriate assumption is that the prediction map πθ : D →
Q be translation equivariant (Definition 2.4). Our proposed improvement of the CNP is
therefore a translation-equivariant parametrisation of πθ. Translation equivariance carries
over to the mean mapm and variance map v, as the following proposition says.

Proposition 5.3. If a prediction map π is translation equivariant, then the mean mapmπ

and variance map vπ are also translation equivariant. Conversely, suppose that π a conditional

neural process in the sense of Definition 3.22. Ifmπ is TE and vπ is TE, then π is translation

equivariant.

π is TE
=⇒

π is a CNP⇐=
mπ is TE and vπ is TE. (5.3)

Proof. See Appendix C.1.

The CNP used deep sets (Theorem 4.5), a general characterisation of functions on data setsD,
to parametrise themeanmapm and variancemap v. In our case,m and v are now translation
equivariant, which means that we instead require a general characterisation of functions on
data sets D which are translation equivariant. This is exactly what convolutional deep sets
offer (Theorem 4.8)! Using convolutional deep sets to parametrise the mean map m and
variance map v constructs a new neural process that we call the Convolutional Conditional
Neural Process (ConvCNP). In Theorem 4.8, we choose the continuous positive-definite
function to be a simple Gaussian kernel.

68

Model 5.4 (Convolutional Conditional Neural Process; ConvCNP). The Convolutional
Conditional Neural Process (ConvCNP) parametrises

mθ(D) = [decθ(z)]1,

vθ(D) = [decθ(z)]2,

z : X → R2,

z(•) =
∑

(x,y)∈D

[
y

1

]
e−

1
2ℓ2

(• −x)2

encℓ(D)

(data channel)
(density channel)

where ℓ > 0 is a length scale and decθ : C(X ,R2) → C(X ,R × [0,∞)) is a translation-

equivariant map implemented by a convolutional neural network.

Although the ConvCNP looks similar to the CNP, there are two important differences.
First, whereas in the CNP the encoding is a vector z ∈ RK , in the ConvCNP the encoding
is a vector-valued function z : X → R2 (Definition 4.6). This function z is then passed
through the decoder decθ, which is a map between function spaces. The result decθ(z)
is two new functions, which become the mean and variance function of the prediction.
Second, whereas in the CNP the encoder and the decoder are implemented with multi-layer
perceptrons (MLPs), the ConvCNP does not require a neural network for the encoder at
all and implements the decoder with a convolutional neural network (CNN). Compared to
MLPs, CNNs offer a massive reduction in parameter count. Therefore, in scenerios where
translation equivariance is appropriate, the ConvCNP can be vastly more parameter efficient
than the CNP.

In the ConvCNP, the encoding z is a vector-valued function. We call the functions in this
vector different channels. The first function z1 is called the data channel and the second
function z2 is called the density channel:

data channel: z1(•) =
∑

(x,y)∈D

y · e−
1
2ℓ2

(• −x)2 (5.4)

density channel: z2(•) =
∑

(x,y)∈D

1 · e−
1
2ℓ2

(• −x)2 (5.5)

Intuitively, the data channel constructs a function by placing Gaussian bumps at the location
of the data points. This communicates the values of the observations to the model. However,
the data channel can be ambiguous: consider observing no observations D = ∅ and ob-
serving a single observationD = {(1, 0)}with y-value equal to zero. In both cases, the data
channel z1 = 0 is zero! That is, the data channel is unable to distinguish between observing
no observation or observing y = 0. This is exactly where the density channel comes in. The
density channel places a unity-weight Gaussian bump at the location of every observation.
Whenever the data channel is zero, the presence of a bump in the density channel reveals

69

whether there was no observation or whether y = 0, thereby breaking the ambiguity.

To implement the ConvCNP, unlike the CNP, one additional approximation is required.
Namely, in Model 5.4, z is a whole function and decθ a mapping between function spaces,
and it is not clear how these objects can be implemented on a computer. We propose an
approximation by discretisation:

Procedure 5.5 (Discretisation). Let map : C(X ,RN1) → C(X ,RN2) be a translation-

equivariant map between function spaces, like the decoder of the ConvCNP. Consider an

input z : X → RN1 for map. Then approximate the output map(z) : X → RN2 with the

following four steps:

z(•)
2
7→

z(u1)
...

z(uK)

 3 CNN
7→

z(out)(u1)

...

z(out)(uK)

 4
7→

K∑
k=1

z(out)(uk)e
− 1

2ℓ2
(• −uk)2 ≈ map(z)(•)

1 Choose a uniformly spaced grid u = (u1, . . . , uK) ∈ XK spanning a region of interest.

2 Discretise z(•) on u.

3 Run this discretisation of z(•) through a CNN. The CNN does the job of map.

4 Interpolate the output of the CNN to any value in X using a Gaussian kernel.

Call the grid in 1 the internal discretisation or more simply the discretisation.

That decθ can be approximated in this way is theoretically motivated by Theorem 3.1 from
Yarotsky (2022), although their setting and discretisation method are slightly different.

The discretisation is the most important parameter of Procedure 5.5, and must be chosen
right. In practice, we choose the discretisation to be a uniformly spaced grid spanning at least
all context and target inputs. Intuitively, the grid spacing determines the smallest length
scale that the model can capture. If the grid too coarse, then the model might underfit the
data. On the other hand, if the grid is too fine, then the discretisation may consume a lot of
memory and unnecessarily waste compute. Our recommendation is to choose the interpoint
spacing of the grid half or one-fourth of the smallest length scale present in the data.

In the ConvCNP, note that the division of the data channel by the density channel constructs
the Nadaraya–Watson estimator m̂(•) (Nadaraya, 1964; Watson, 1964), a nonparametric

70

estimator of the mean function:

m̂(•) :=

∑
(x,y)∈D y · e

− 1
2ℓ2

(• −x)2∑
(x,y)∈D 1 · e−

1
2ℓ2

(• −x)2
=
z1(•)

z2(•)
. (5.6)

To help to model fit quicker and better, the architecture can be tweaked by manually dividing
the data channel by the density channel before feeding the channels to the decoder:

z(•) =

[
z1

z2

]
7→

[
z1/z2

z2

]
7→ · · ·

(data channel)
(density channel)

(5.7)

With this change, after the division, the data channel is already a reasonable estimator of
the mean function.

CNPs bear similarities to methods from the literature of point cloud modelling. The CNP
can be compared to PointNet (Qi et al., 2017); and the ConvCNP, a translation-equivariant
extension of the CNP, to PointConv (Wu et al., 2019), a translation-equivariant extension
of PointNet. A key difference between the ConvCNP and PointConv is that signals in the
ConvCNP live on a predefined grid (the discretisation in Procedure 5.5) and convolutions are
standard convolutions, whereas signals in PointConv live on the positions of (a subset of)
the points and convolutions are performed using weights parametrised with an MLP. In this
sense, PointConv is similar to SchNet (Schütt et al., 2017), which uses continuous-filter con-
volutional layers, or more generally equivariant message passing (Satorras et al., 2021).

5.4 Translation Equivariance and Generalisation

In Section 2.2, we proposed building translation equivariance into the prediction map as a
way of improving generalisation performance. In the previous section, translation equivari-
ance was derived from stationarity of the ground-truth stochastic process f . This makes a
strong case for translation equivariance. In this section, we reinforce this case by showing
that translation equivariance can indeed improve generalisation performance.

The key to understanding how translation equivariance and generalisation performance
connect is a notion called the receptive field. The notion of a receptive field originates from
the field of biology (Sherrington, 1906), but nowadays it also used to describe a property
of convolutional neural networks (Luo et al., 2016). Intuitively, the receptive field of a
convolutional neural network is the following. Consider a CNN mapping an imageX to
another image Y. If a particular input pixel Xi,j is perturbed, then, due to the finite size of
the convolutional filters, only a certain region R of output pixels is affected. This region

71

x(c)

x(t)

R

R

(a) For a model with receptive field R > 0 (Def. 5.6), a
context point at x(c) influences predictions at target in-
puts only limitedly far away. Conversely, a prediction
at a target input x(t) is influenced by context points
only limitedly far away.

x(c)

x(t)

training range

R R

TE

(b) If a model is translation equivariant (TE; Def. 2.4),
then all context points and targets inputs can simul-
taneously shifted left or right without changing the
output of the model. Intuitively, this means that tri-
angles in the figures can just be “shifted left or right”.

Figure 5.1: Translation equivariance in combination with a limited receptive field (see (a)) can help
generalisation performance. Consider a translation-equivariant (TE) model which performs well
within a training range (see (b)). Consider a prediction for a target input outside the training range
(right triangle in (b)). If the model has receptive field R > 0 and the training range range is bigger
than R, then TE can be used to “shift that prediction back into the training range” (see (b)). Since
the model performs well within the training range, the model also performs well for the target input
outside the training range.

R is the receptive field. Usually, however, the receptive field is defined just the other way
around. Due to the finite size of the convolutional filters, every output pixel Yi,j is only
affected by a certain region R of input pixels, and this region R is called the receptive field.
By running the network backwards and noting that this does not influence what affects
what, one can see that these definitions are equivalent. Rather than specifying a region,
the receptive field R is sometimes just a scalar, referring to the width of the interval R for
one-dimensional CNNs, the side length of the square R for two-dimensional CNNs, the side
length of the cube R for three-dimensional CNNs, et cetera.

We now define the receptive field more carefully. For x,y ∈ I , let y|x,R be the subvector
of y with elements at most distance R from x. Similarly, for D ∈ D and x ∈ XN , let D|x,R
denote the subcollection of input–output pairs with inputs at most distanceR from x .

Definition 5.6 (Receptive field). Let R > 0.

• A Y-valued stochastic process f on X has receptive field size R if, for all x,y ∈ I ,

f(x) | f(y) d
= f(x) | f(y|x, 1

2
R). (5.8)

• A prediction map π : D → P has receptive field size R if, for all D ∈ D and x ∈ I ,

Pxπ(D) = Pxπ(D|x, 1
2
R). (5.9)

Figure 5.1a illustrates how the receptive field of a neural process influences predictions the

72

predictions of the model. If the ground-truth stochastic process f has receptive field size
R > 0, then it is immediate from the definitions that the posterior prediction map πf has
receptive field R; and for any D ∈ D, πf (D) has receptive field R. For example, if f is a
stationary Gaussian process with a compactly supported kernel k : X → R, then f has
finite receptive field size. More precisely, if k(τ) = 0 for |τ | ≥ 1

2
R, then f has receptive

field size R.

The main insight of this section is that a limited receptive field in combination with trans-
lation equivariance can help generalisation performance. This insight is illustrated and
explained in Figure 5.1 and formalised in the following theorem.

Theorem 5.7. Let π1, π2 : D → P be translation-equivariant prediction maps with receptive

field R > 0. Assume that, for all D ∈ D, π1(D) and π2(D) also have receptive field

R > 0. Let ε > 0 and fix N ∈ N. Assume that, for all x ∈
⋃N
n=1[0, 2R]

n and D ∈
D ∩

⋃∞
n=0([0, 2R]× R)n,

KL(Pxπ1(D), Pxπ2(D)) ≤ ε. (5.10)

Then, for allM > 0, x ∈
⋃N
n=1[0,M]n, and D ∈ D ∩

⋃∞
n=0([0,M]× R)n,

KL(Pxπ1(D), Pxπ2(D)) ≤ ⌈2M/R⌉ε. (5.11)

Proof. See Appendix C.2.

If a prediction map is well approximated on an interval of at least twice the receptive field
size, then Theorem 5.7 says that it is well approximated on any bigger interval, where the
approximation error is proportional to the size of the bigger interval. Since we can compute
the receptive field of a CNN architecture, Theorem 5.7 offers practical guidance: during
training, it suffices to sample the context sets from an interval at least twice the receptive
field size.

In this section, our definition of the receptive field (Definition 5.6) has been rather strict:
an output depends on all inputs within the receptive field and on no inputs outside the
receptive field. A more nuanced perspective is offered by Luo et al. (2016), who argue that
not all inputs within the receptive field contribute equally, investigating the concept of an
effective receptive field. Therefore, a more realistic definition might be that outputs depend
more on inputs nearby and less on inputs far away. A formal definition could prescribe
some kind of decay. We leave an investigation of this for future work.

73

−2 −1 0 1 2

−2

0

2

CNP

−2 −1 0 1 2

−2

0

2

ConvCNP

−2 −1 0 1 2

−2

0

2

Ground Truth

Figure 5.2: Comparison of samples from a trained CNP and ConvCNP to samples from the ground
truth. Shows predictions by the models in dashed blue and predictions by the ground truth in
dot-dashed purple. Filled regions are central 95%-credible regions. The CNP and ConvCNP are taken
from the experiment in Section 6.2.

5.5 Gaussian Neural Processes

The ConvCNP (Model 5.4) builds translation equivariance into the CNP, improving gen-
eralisation performance whenever the ground-truth stochastic process f is stationary. In
this section, we address another shortcoming: the CNP’s inability to model dependencies
between different target outputs. This deficiency is best understood visually. Figure 5.2
shows predictions and samples from a well-trained CNP and ConvCNP. Due the lack of
dependencies in the prediction, the samples look incredibly noisy and not at all like samples
from the ground truth.

We address the inability to produce coherent samples simply by changing the variational
family Q. We change Q from the collection of Gaussian processes that do not model de-
pendencies between target outputs to the collection of Gaussian processes that do model
dependencies between target outputs. We call this class Gaussian neural processes (GNPs).
The class of GNPs was formally defined in Definition 3.23. With this new choice of vari-
ational family Q, a Gaussian neural process πθ : D → Q is identified by its mean mapm
and its kernel map k (Definition 3.19). Recall that the kernel map k is the map from a data
set to the covariance function of the predictive stochastic process:

k : D → RX×X , k(D) = (x, y) 7→ covπ(D)(f(x), f(y)). (5.12)

See Section 3.4 for a more detailed description of the class of GNPs. To construct a Gaussian
neural process, the main challenge is to come up with a parametrisation of the kernel map.
Our first two constructions are based on the eigenmap of a kernel map.

Definition 5.8 (Eigenmap). For a kernel map k and Hilbert space (H, ⟨ • , • ⟩H), call a function
ψ an eigenmap on H if it is a function ψ : D → HX such that

k(D)(x, y) = ⟨ψ(D)(x), ψ(D)(y)⟩H for all D ∈ D and x, y ∈ X . (5.13)

74

In our first member of the GNP class, called the Gaussian Neural Process (GNP), we para-
metrise the kernel map k by parametrising the eigenmap ψ with a deep set (Theorem 4.5).
In particular, we assume that the kernel map k has an eigenmap ψ on some R-dimensional
Euclidean spaceRR (mnemonic: R for rank). This gives the following parametrisation:

Model 5.9 (Gaussian Neural Process; GNP). The Gaussian Neural Process (GNP) paramet-

rises

mθ(D) = x 7→ [decθ(z, x)]1,

kθ(D) = (x, y) 7→ ⟨[decθ(z, x)]2:1+R, [decθ(z, y)]2:1+R⟩,

z ∈ RK ,

z =
∑

(x,y)∈D

ϕθ(x, y),

encθ(D)

where ϕθ : X × Y → RK and decθ : RK ×X → R1+R are multi-layer perceptrons.

The GNP is a generalisation of the CNP that models dependencies between target outputs.
Indeed, comparing Models 5.1 and 5.9, the two parametrisations differ only in the paramet-
risation of the uncertainty: the CNP parametrises the variance map v with an MLP, whereas
the GNP parametrises the eigenmap ψ with an MLP.

The construction of the GNP comes with two technical caveats. First, recall the Hilbert space
(ℓ2, ⟨ • , • ⟩ℓ2) given by ℓ2 = {(xn)n≥1 ⊆ R :

∑∞
n=1 x

2
n < ∞} with ⟨x, y⟩ℓ2 =

∑∞
n=1 xnyn.

If X is compact, then, by Mercer’s theorem (Theorem 3.3.1; Adler, 1981), every kernel
map k has an eigenmap on ℓ2. To justify the assumption that k has an eigenmap on some
R-dimensional Euclidean spaceRR, we can truncate the summation of the ℓ2–inner product
in (5.13). This truncation, however, will need to conform to the topology on the collection
of kernel maps. In Section 3.5, we argued that a suitable topology is the one induced by
the supremum norm. Therefore, to make the assumption that k has an eigenmap on some
RR precise, we will need to argue that the ℓ2–inner product in (5.13) can be truncated
uniformly over D ∈ D and x, y ∈ X . We leave this verification for future work. Second, to
approximate the eigenmap ψ with an MLP, we need that it is continuous. We just argued
that every kernel map has an eigenmap. However, we did not argue that this eigenmap is
continuous. We also leave this verification for future work.

The second model that we construct in this section is a generalisation of the ConvCNP
that models dependencies between target outputs. This model is called the Convolutional
Gaussian Neural Process (ConvGNP). Like for the ConvCNP, we again assume that the
ground-truth stochastic process f is stationary, so the posterior prediction map πf is trans-
lation equivariant (Proposition 5.2). For GNPs, translation equivariance of the prediction
map carries over to the kernel map k in a slightly different way.

75

Definition 5.10 (Diagonal translation equivariance of kernel map; DTE). Call a kernel map

k : D → RX×X diagonally translation equivariant (DTE) if

k ◦ Tτ = T(τ,τ) ◦ k for all τ ∈ X . (5.14)

Proposition 5.11. If a prediction map π is translation equivariant, then the mean map

mπ is translation equivariant and the kernel map kπ is diagonally translation equivariant.

Conversely, suppose that π is a Gaussian neural process in the sense of Definition 3.23. Ifmπ is

TE and kπ is DTE, then π is translation equivariant. In formulas,

π is TE
=⇒

π is a GNP⇐=
mπ is TE and kπ is DTE. (5.15)

Proof. See Appendix C.3.

Like for the GNP, assume that the kernel map k has an eigenmap ψ on some R-dimensional
Euclidean space RR. The construction of the ConvGNP follows the same progression as
Section 5.3, where we replaced the deep set parametrisation with convolutional deep sets.
Hence, rather than parametrising the eigenmap ψ with deep sets, we now parametrise ψ
with convolutional deep sets (Theorem 4.8):

Model 5.12 (Convolutional Gaussian Neural Process; ConvGNP). The Convolutional Gaus-
sian Neural Process (ConvGNP) parametrises

mθ(D) = [decθ(z)]1,

kθ(D) = ⟨[decθ(z)]2:1+R, [decθ(z)]2:1+R⟩,

z : X → R2,

z(•) =
∑

(x,y)∈D

[
y

1

]
e−

1
2ℓ2

(• −x)2

encℓ(D)

(data ch.)
(density ch.)

where ℓ > 0 is a length scale and decθ : C(X ,R2)→ C(X ,R1+R) is a translation-equivariant

map implemented by a convolutional neural network.

The caveats for the GNP also apply to the ConvGNP. The ConvGNP, however, comes with
an important additional caveat. By Proposition 5.11, we require a general parametrisation
of a DTE kernel map. To this end, the ConvGNP parametrised a TE eigenmap. Indeed,
if the eigenmap is TE, then the kernel map is DTE. However, if a kernel map is DTE,
then it is not necessarily true that the eigenmap is TE! This means that restricting the
eigenmap to be TE can potentially come at the loss of representational capacity. We leave
a theoretical investigation of this issue for future work, but we mention one significant

76

practical consequence. If D = ∅, then ψ(∅) will be a constant function, so kθ(∅) will be a
constant function too. Since conditioning on no data (D = ∅) recovers the prior, this means
that the ConvGNP is unable to model the prior! This substantial flaw of the ConvGNP
underlines the importance fully basing neural process architectures on representation
theorems, which guarantee that such representational capacity issues cannot occur. For
the ConvGNP, we momentarily deviated from this recipe by assuming a TE model for the
eigenmap, and we immediately ran into problems.

The GNP and ConvGNP parametrise the kernel map k by parametrising the eigenmap ψ. For
the third and last model that we construct in the section, we directly parametrise the kernel
map k without going through the eigenmap ψ. In Section 4.5, we investigated the notation
of diagonal translation equivariance. In particular, we developed Theorem 4.9, an extension
of convolutional deep sets (Theorem 4.8) to functions on data sets D which are translation
equivariant in the sense of Definition 5.10. The Fully Convolutional Gaussian Neural Process

(FullConvGNP) uses Theorem 4.8 to parametrise the mean map and Theorem 4.9 to para-
metrise the kernel map. As suggested just below Theorem 4.9, for Theorem 4.9, we choose
c to be a Gaussian which decays with the distance from the diagonal.

Model 5.13 (Fully Convolutional Gaussian Neural Process; FullConvGNP). The Fully
Convolutional Gaussian Neural Process (FullConvGNP) parametrises

z(m) : X → R2,

mθ(D) = dec(m)
θ (z(m)), z(m)(•) =

∑
(x,y)∈D

[
y

1

]
e−

1
2ℓ2

(• −x)2 ,

enc(m)
ℓ (D)

(data channel)
(density channel)

z(k) : X × X → R3,

kθ(D) = dec(k)θ (z(k)), z(k)(•) =

∑

(x,y)∈D

[
y

1

]
e−

1
2ℓ2

∥ •−(x,x)∥22

e−
1

2ℓ2
⟨ • ,(1,−1)⟩2

enc(k)ℓ (D)

(data channel)
(density channel)

(source channel)

where ℓ > 0 are length scales and

dec(m)
θ : C(X ,R2)→ C(X ,R), (5.16)

dec(k)θ : C(X × X ,R3)→ Cp.s.d(X × X ,R) (5.17)

are translation-equivariant maps implemented by convolutional neural networks.

77

The application of Theorem 4.9 yields an architecture which is more complicated than the
architectures we have seen so far. To begin with, in Model 5.13, the encoding for the kernel
map is a function on X × X rather than on X . For a fixed vector of target inputs x, the
kernel map generates kernel matrices. This encoding on X × X , which you can intuit as an
image, should be interpreted as the foundation for these kernel matrices. Whereas the data
previously placed bumps at the data point locations, for the encoding on X × X , the data
points also place bumps, but now on the diagonal of this image. Moreover, in addition to
the data channel and density channel, the encoding now involves a third channel called
the source channel. Intuitively, the source channel represents uncorrelated noise, forming
the basis for a correlated response. For example, to sample from a Gaussian x ∼ N (µ,Σ),
one typically sets x = Lε + µ where L = chol(Σ) is the Cholesky decomposition and
ε ∼ N (0, I) is noise; this procedure is called the reparametrisation trick (Kingma et al.,
2013). Intuitively, the role of the source channel is similar to the role of the noise in the
reparametrisation trick. The source channel plays a crucial role in the generality of the
architecture. For the ConvGNP, we found that a translation-equivariant parametrisation of
the eigenmap of the kernel map limits the representational capacity of the model. For the
FullConvGNP, there are no such concerns, because Theorem 4.9 guarantees that Model 5.13
is general. For example, if D = ∅ and the source channel were absent, then the encoding
would be the zero function, so kθ(∅) would be a constant function, just like what happens
for the ConvGNP. Therefore, in the case of no context data, the presence of source channel
enables the architecture to generate a non-constant prior covariance; in other words, the
source channel enables the FullConvGNP to model the prior.

The FullConvGNP is called “Fully Convolutional” because, in addition to convolutions on X ,
it also includes convolutions on X × X . One distinctive property of Model 5.13 is that the
architectures for the mean map and kernel map are entirely separate. This gives increased
flexibility, because these architectures can be configured separately, presenting increased
control over the model’s computational requirements. On the other hand, separating the
architectures for the mean map and kernel map prevents any parameter sharing, possibly
hurting the model’s performance.

To implement the parametrisation of the kernel map, we propose the same discretisation
approach (Procedure 5.5) that we discussed earlier. There are two additional implementation
details. First, for small length scales ℓ, the off-diagonal entries of the source channel
become zero. We may therefore more simply implement the source channel with an
identity matrix. Second, (5.17) requires that the output is a positive-definite function. We
implement this by applying the matrix transformation Z 7→ ZZT between steps 3 and 4

in Procedure 5.5.

78

−2 −1 0 1 2

−2

0

2

G
N

P
Noiseless Samples

−2 −1 0 1 2

−2

0

2

Noisy Samples

Ground truth
Prediction

−2 −1 0 1 2

−2

0

2

C
on

vG
N

P

−2 −1 0 1 2

−2

0

2

−2 −1 0 1 2

−2

0

2

F
ul

lC
on

vG
N

P

−2 −1 0 1 2

−2

0

2

−2 −1 0 1 2

−2

0

2

G
ro

un
d

tr
ut

h

−2 −1 0 1 2

−2

0

2

Figure 5.3: Comparison of noiseless (left) and noisy (right) samples from the GNP, ConvGNP, and
FullConvGNP to noisy and noiseless sample of the ground truth. Shows predictions by the models in
dashed blue and predictions by the ground truth in dot-dashed purple. Filled regions are 95%-credible
regions. The GNP, ConvGNP, and FullConvGNP are taken from the experiment in Section 6.2.

The GNP, ConvGNP, and FullConvGNP all model dependencies between target outputs
by directly parametrising the covariance between target points. Since the predictions of
GNPs are Gaussian, the empirical neural process objective (Definition 2.2) can be evaluated
exactly. Therefore, GNPs model dependencies between target outputs and can be trained
without approximations.

Figure 5.3 shows noiseless and noisy samples from a well-trained GNP, ConvGNP, and
FullConvGNP. Unlike the samples from the CNP and ConvCNP in Figure 5.2, the noiseless
samples look smooth and much more like samples from the ground truth. Additionally,
note that the amount of noise allocated by the models looks like the amount allocated by
the ground truth. This demonstrates the ability of GNPs to separate epistemic and aleatoric
uncertainty. See Section 3.4 for a discussion about separation of epistemic and aleatoric
uncertainty.

79

Table 5.1: Overview how all models in this chapter are constructed. For the mean of the predictions,
all models parametrise the mean map m (Definition 3.18). However, for the uncertainty of the
predictions, models parametrise either the variance map m (Definition 3.20), eigenmap (Defini-
tion 5.8), or kernel map (Definition 3.19); and these maps may admit a symmetry. “TE” stands for
translation equivariance (Definition 2.4) and “DTE” stands for diagonal translation equivariance
(Definition 4.10).

Model How uncertainty? Symmetry Representation theorem

CNP (Mod. 5.1) Variance map v None Deep set (Thm 4.5)
ConvCNP (Mod. 5.4) Variance map v TE Conv. deep set (Thm 4.5)
GNP (Mod. 5.9) Eigenmap ψ None Deep set (Thm 4.5)
ConvGNP (Mod. 5.4) Eigenmap ψ TE Conv. deep set (Thm 4.8)
FullConvGNP (Mod. 5.13) Kernel map k DTE Conv. deep set (Thm 4.9)

Table 5.1 provides an overview of all models that we have seen so far.

5.6 Autoregressive Conditional Neural Processes

In the previous section, we proposed the class of Gaussian neural processes (GNPs). Gaussian
neural processes address the inability of conditional neural process to produce coherent
samples by directly parametrising covariances between target outputs. Although GNPs can
successfully produce coherent samples and can be trained without approximations, GNPs
are limited to Gaussian predictions. Another class of neural processes that can successfully
produce coherent samples is the class of latent-variable neural processes (LNPs; Garnelo
et al., 2018b). LNPs use a latent variable to model dependencies between target outputs
and can even produce non-Gaussian predictions. Training LNPs with the neural process
objective, however, requires additional approximations.

In this section, we propose a third approach to modelling dependencies between target
outputs. Like GNPs, this approach can be trained without additional approximations; and
like LNPs, this approach is be able to produce non-Gaussian predictions. Instead, what
we give up is consistency (Section 2.1): we will no longer produce a prediction that is a
stochastic process.

The approach that we propose involves no modifications to the model or training procedure.
Instead, after training, we propose to deploy the model in a different way. Suppose that
π : D → Q is a neural process trained as usual, with the neural process objective. Suppose
that we wish to deploy the neural process π for a context set D and some target inputs x.
According to our developments so far, we would take P σ

x π(D) as the prediction for the
corresponding target outputs y. The proposal of this section is to instead roll out the CNP
in an autoregressive fashion, as follows. Recall that x⊕ y concatenates x and y.

80

Procedure 5.14 (Autoregressive application of noisy prediction map). For a noisy prediction

map (π, σ) ∈ M, context set (x(c),y(c)) ∈ D, and target inputs x(t) ∈ I , let ARσ
x(t)(π,D) be

the distribution defined by the following procedure:

y(t)1 ∼ P σ

x(t)1
π(x(c),y(c)), (AR-1)

y(t)2 ∼ P σ

x(t)2
π(x(c) ⊕ x(t)1 , y(c) ⊕ y(t)1),

...

y(t)N ∼ P σ

x(t)N
π(x(c) ⊕ x(t)

1:(N−1), y
(c) ⊕ y(t)

1:(N−1)) (AR-N)

where N is the number of target inputs.

Because earlier samples yi feed back into later applications of π, the whole sample y is
correlated. Crucially, this is the case even if π does not model dependencies between target

outputs! This means that we can get correlated samples out of a CNP by rolling out the
model in an autoregressive fashion.

Suppressing the target inputs, (AR-1) through (AR-N) are inspired by the following applic-
ation of the product rule:

p(y1, . . . , yN |D) = p(y1 |D)p(y2 | y1, D) · · · p(yN | yN−1, . . . , y1, D). (5.18)

However, compared to this application of the product rule, there is one very important
difference. In (5.18), we could have decomposed the joint p(y1, . . . , yN |D) in a different
way, leading to a different order of the conditionals; for example,

p(y1, . . . , yN |D) = p(y2 |D)p(y11 | y2, D)p(y5 | y11, y2, D) · · · (5.19)

Even though the ordering of the conditionals is different, the resulting samples are always
samples from the joint p(y1, . . . , yN |D). This consistency property tells us that it does not
matter in which way we order the conditionals: the resulting samples will always be samples
from the same, well-defined joint distribution. Critically, for (AR-1) through (AR-N), this
consistency property is no longer true! It matters whether we first y1 ∼ P σ

x1
π(D) and then

y2 ∼ P σ
x2
π(D⊕ (x1, y1)); or first y2 ∼ P σ

x2
π(D) and then y1 ∼ P σ

x1
π(D⊕ (x2, y2)). In other

words, (AR-1) through (AR-N) require us to choose an ordering of the target inputs, and
the quality of the resulting predictions for the target outputs depends on this ordering!
Similarly, the quality of the resulting predictions also depend on the number of target inputs.
In terms of the terminology of Section 2.1, rolling out a neural process in an autoregressive
fashion is a no longer a consistent probabilistic meta-learning algorithm. The predictions
therefore no longer define a stochastic process.

81

For a task with context set D(c), target inputs x(t), and target outputs y(t), call the log-
probability of y(t) under ARσ

x(t)(π,D(c)) the autoregressive log-likelihood. To be clear and
avoid ambiguous language, we will call the log-probability of y(t) under P σ

x(t)π(D
(c)) the

usual log-likelihood:

usual log-likelihood: log qθ(y
(t) |x(t), D(c)), (5.20)

autoregressive log-likelihood:
N∑
n=1

log qθ(y
(t)
n |x(t)n , D(c) ⊕ (x(t)

1:(n−1),y
(t)
1:(n−1))). (5.21)

In some cases, the autoregressive log-likelihood can be a much better estimate of the true
log-probability of the data than the usual log-likelihood. By averaging the autoregressive
likelihood for all tasks in the meta–data set, we define the autoregressive neural process
objective L(AR)

M :

LM(π, σ) =
1

M

M∑
m=1

log qθ(y
(t)
m |x(t)

m, D
(c)
m), (5.22)

L(AR)
M (π, σ) =

1

M

M∑
m=1

Nm∑
n=1

log qθ(y
(t)
m,n |x(t)m,n, D(c)

m ⊕ (x(t)
m,1:(n−1),y

(t)
m,1:(n−1))). (5.23)

Similarly, in some cases, the autoregressive neural process objective L(AR)
M can be a much

better estimate of the log-probability of a meta–data set than the usual neural process
objective LM .

Using Procedure 5.14, to make a prediction for a task withN target points, the neural process
has to be run forwardN times; that is, (AR-1) through (AR-N) requireN applications of the
neural process π. Therefore, whilst any neural process can be rolled out autoregressively,
we will focus on the computationally cheapest class of neural processes: conditional neural
processes (CNPs). We will use the term autoregressive conditional neural processes (AR CNPs)
to generally mean rolling out CNPs according to (AR-1) through (AR-N). In the remainder
of this section, we will discuss the strengths and shortcomings of AR CNPs.

Strengths. The first and foremost advantage of AR CNPs over CNPs is that AR CNPs
produce predictions which model dependencies between target outputs. In addition, these
predictions are non-Gaussian: in (AR-1) through (AR-N), the samples yi pass through the
prediction map π, which is implemented with highly nonlinear neural networks. This puts
AR CNPs on the same level of flexibility as LNPs. However, although the predictions of AR
CNPs are non-Gaussian and flexible, every sample yi ∼ P σ

xi
π(· · ·) in (AR-1) through (AR-N)

is still conditionally Gaussian, so the predictions are still restricted in some way.

Second, training AR CNPs is as cheap as training CNPs. Namely, to train an AR CNPs, we

82

just train a CNP as we would train it normally. The only difference between AR CNPs and
CNPs is how the model is deployed at test time. This is a big advantage compared other
models which model dependencies between target outputs, such as LNPs and GNPs, which
can be substantially more expensive to train.

Third, even though the autoregressive neural process objective L(AR)
M can be a much better

estimate of the log-probability of a meta–data set than the usual neural process objective
LM , it is not necessary to train with L(AR)

M . To see this, consider the derived meta–data set
by splitting every task with N target inputs into N tasks with one target point:

{(D(c)
m ,x

(t)
m,y

(t)
m)}Mm=1

original meta–data set

becomes
M⋃
m=1

{
(D(c)

m ⊕ (x(t)
m,1:(n−1),y

(t)
m,1:(n−1)), x

(t)
m,n, y

(t)
m,n)

}Nm

n=1

derived meta–data set

.

Then, up to a normalisation factor, L(AR)
M with the original data set is equal to LM with the

derived data set: in (5.23), the double summation becomes one summation over the derived
data set. For LNP with the derived data set, the characterisation of the conditional neural
process approximation (CNPA; Definition 3.24) by Proposition 3.26 still applies, because this
characterisation works for target set sizes of any fixed size, including size one. Therefore,
for the class of CNPs, LM and L(AR)

M are two different objectives for the same solution. Since
the autoregressive neural process objective L(AR)

M is substantially more expensive, the more
reasonable choice is to train with the usual neural process objective LM .

Fourth, in the limit of infinite data, AR CNPs are guaranteed to perform better than GNPs.
We formalise this in the following proposition, which is a statement about the conditional
neural process approximation (CNPA; Definition 3.24) and Gaussian neural process approx-
imation (GNPA; Definition 3.24). Recall that the CNPA and GNPA are what CNPs and GNPs
approximate in the limit of infinite data; see Section 3.5 for a discussion of convergence in
the limit of infinite data.

Proposition 5.15 (Advantage of AR CNPs). Let (πC, σC) be a CNPA and let (πG, σG) be the

GNPA. Then, for all x ∈ I and D ∈ D̃ (see Section 3.2),

KL(P
σf
x πf (D),ARσC

x (πC, D)) ≤ KL(P
σf
x πf (D), P σG

x πG(D)). (5.24)

Proof. See Appendix C.4.

Weaknesses. Despite the many strengths of AR CNPs, the class also has a few significant
weaknesses. The biggest weakness is one which we already discussed: the quality of the
predictions of AR CNPs depends on the number and order of the target points. This means

83

that AR CNPs are no longer consistent probabilistic meta-learning algorithms and therefore
no longer define stochastic processes (Section 2.1). The lack of consistency has many
consequences. One important consequence is that AR CNPs cannot sample successfully
sample at arbitrary target locations. What goes wrong is that (AR-1) through (AR-N)
evaluate the neural process π at more and more context points. At some point, the neural
process π will be evaluated at a number of context points that the model has not seen during
training, and the predictions may start to break down. For AR ConvCNPs, due to the spatial
locality of the data channel and density channel, what matters is the density of the target
inputs rather than the number target inputs.

Second, although training an AR CNPs is as cheap as training a CNP, rolling out the CNP
according to (AR-1) through (AR-N) requires N applications of the neural process π rather
than just one. Consequently, for large numbers of target points, AR CNPs incur a significant
computational cost. One possible workaround is to use an autoregressive GNP instead
of an autoregressive CNP. Then, when (AR-1) through (AR-N) has nearly exhausted the
available computational budget, e.g. at n = Nbudget− 1, the GNP π may produce a correlated
prediction for the remainder of the target points at once:

y1 ∼ P σ
x1
π(D), (5.25)

y2 ∼ P σ
x2
π(D ⊕ (x1, y1)), (5.26)

...

yNbudget−1 ∼ P σ
xNbudget−1

π(D ⊕ (x1:(Nbudget−2),y1:(Nbudget−2))), (5.27)

yNbudget:N ∼ P σ
xNbudget:N

π(D ⊕ (x1:(Nbudget−1),y1:(Nbudget−1))). (5.28)

In this way, it is possible to obtain flexible, non-Gaussian predictions over large numbers of
target points without paying the computational cost of running (AR-1) through (AR-N) all
the way. Note that many more strategies are possible; for example, one can also sample the
target outputs in blocks. This sizeable increase in the design space is a consequence of the
unfortunate lack of consistency of AR NPs. Note that (5.25) through (5.28) can also be used
when there so many target points that consistency becomes an issue, as discussed in the
previous paragraph.

Third, like CNPs, but unlike GNPs and LNPs, AR CNPs cannot separate epistemic and
aleatoric uncertainty. That is, samples of AR CNPs cannot be decomposed into a smooth
component, a component which represents uncertainty about the ground-truth stochastic
process, and a noise component. See Section 3.4 for a discussion about separation of epi-
stemic and aleatoric uncertainty. The following proposition provides a partial remedy.

84

−2 −1 0 1 2

−2

0

2

A
R

C
on

vC
N

P
Noiseless Samples

−2 −1 0 1 2

−2

0

2

Noisy Samples

Ground truth
Prediction

−2 −1 0 1 2

−2

0

2

G
ro

un
d

tr
ut

h

−2 −1 0 1 2

−2

0

2

Figure 5.4: Comparison of noiseless (left) and noisy (right) samples from the AR ConvCNP to noisy
and noiseless sample of the ground truth. Shows predictions by the models in dashed blue and
predictions by the ground truth in dot-dashed purple. Filled regions are 95%-credible regions. The
ConvCNP is taken from the experiment in Section 6.2.

Proposition 5.16 (Recovery of smooth samples). Let X ⊆ R be compact, and let f be

a stochastic process with surely continuous sample paths and supx∈X∥f(x)∥L2 < ∞. Let

(εn)n≥0 be i.i.d. random variables such that E[ε0] = 0 and var(ε0) < ∞. Consider any

sequence (xn)n≥1 ⊆ X , and let x∗ ∈ X be a limit point of (xn)n≥1, assuming that a limit

point exists. If y(x∗) = f(x∗) + ε0 and yn = f(xn) + εn are noisy observations of f , then

lim
n→∞

E[y(x∗) | y1, . . . , yn] = f(x∗) almost surely. (5.29)

Proof. See Appendix C.4.

If we assume that a sample of an AR CNP is the sum of a smooth component and independent
noise, then Proposition 5.16 says that we can take the noisy sample as a context set Dsample

and that the mean of the predictionm(Dsample) will approximate the smooth component.
This interpretation of Proposition 5.16 assumes that the CNP is able to approximate the true
conditional expectation; and that the AR CNP is sampled at sufficiently many inputs. In the
limit of infinite data, the former assumption can be true (Proposition 3.26 and Section 3.5).
The latter assumption, however, may pose an issue: due to first weakness, the lack of
consistency, AR CNPs cannot be evaluated at arbitrarily many target points.

Figure 5.4 shows noiseless and noisy samples from a well-trained AR ConvCNP. In Figure 5.4,
the noiseless samples are generated using Proposition 5.16. Note that the amount of noise
allocated by the AR ConvCNP looks like the amount allocated by the ground truth. This
shows that Proposition 5.16 can successfully be used to separate epistemic and aleatoric
uncertainty.

85

Table 5.2: Comparison of various classes of neural processes. Shows how the two classes of neural
processes proposed in this chapter, Gaussian neural processes (GNPs; Section 5.5) and autoregressive
conditional neural processes (AR CNPs; Section 5.6), fit in with conditional neural processes (CNPs)
and latent-variable neural processes (LNPs). Shows whether a class produces consistent predictions
(“Consistent”; Section 2.1); models dependencies in predictions (“Dependencies”); can produce non-
Gaussian preditions (“Non-Gaussian”); and can be trained without approximations (“Objective”).
For CNPs, even though the presentation by Garnelo et al. (2018a) assumes Gaussian predictions, it is
simple relax this Gaussianity assumption; this is not the case for GNPs.

Class Consistent Dependencies Non-Gaussian Objective

AR CNPs (Section 5.6) ✗ ✓ ✓ ✓
CNPs (Garnelo et al., 2018a) ✓ ✗ ✓ ✓
GNPs (Section 5.5) ✓ ✓ ✗ ✓
LNPs (Garnelo et al., 2018b) ✓ ✓ ✓ ✗

Choice of ordering. To sample from an AR CNP in practice, one must choose an ordering
of the target points. Our recommendation is to choose a different random ordering for
every sample. For the first steps in the AR sampling process, the assumption of Gaussian
predictions by the CNP may poorly fit the data, so these first few samples may be distorted.
However, once you go along in the sampling process and the context set grows large,
predictions become more concentrated, and the assumption of Gaussian predictions tends
to become less and less restrictive. Therefore, a sample from an AR CNP usually shows
the biggest distortions at the target inputs that are sampled first. By choosing a different
random ordering for every sample, these distortions are spread out over the input space.
This minimises the overall impact of the distortions on the samples and statistics computed
from the samples.

Table 5.2 compares themain properties of the classes CNPs, GNPs, LNPs, and ARCNPs.

5.7 Conclusion

In this chapter, we proposed a family of neural process models based on convolutional neural
networks: the ConvCNP (Model 5.4), the ConvGNP (Model 5.12), and the FullConvGNP
(Model 5.13). We call these models convolutional neural processes (ConvNPs).

The first neural process was proposed by Garnelo et al. (2018a) and called the Conditional
Neural Process (CNP). The CNP is constructed by generally parametrising the prediction
map using deep sets (Theorem 4.5). In particular, the CNP makes no assumptions about
the underlying ground-truth stochastic process f . The family of convolutional neural
processes assumes that the ground-truth stochastic process f is stationary. By assuming
that f is stationary, ConvNPs may parametrise a prediction map which is translation

86

equivariant (Proposition 5.2). To parametrise a translation-equivariant prediction map, we
used convolutional deep sets (Theorems 4.8 and 4.9) instead of deep sets (Theorem 4.5),
resulting in architectures based on convolutional neural networks (CNNs) rather than on
multi-layer perceptrons (MLPs). By building translation equivariance in a neural process,
we enable the model to better generalise in scenarios where stationarity of the prior f is
appropriate (Theorem 5.7).

Convolutional neural processes inherit two important limitations from convolutional deep
sets (Theorems 4.8 and 4.9; Section 4.6). First, the implementation of ConvNPs involves
discretising a function and passing this discretisation through a CNN (Section 5.3). Im-
portantly, for the ConvCNP and ConvGNP, the dimensionality of this CNN is equal to the
dimensionality of the inputs of the data points; and for the FullConvGNP, equal to twice
the dimensionality of the inputs of the data points. This means that the ConvCNP and
ConvGNP can only feasibly be applied to data with one, two, and three-dimensional; and
the FullConvGNP only to data with one-dimensional inputs. Moreover, if the discretisation
is fine, then the models may require large amounts of memory and could become com-
putationally too expensive. Second, although ConvNPs successfully parametrise general
translation-equivariant prediction maps, perhaps we require a parametrisation which is only
approximately translation equivariant. Equivalently, perhaps the ground-truth stochastic
process f is not perfectly stationary, but only approximately stationary. In such scenarios,
ideally we would require a model which could “interpolate” between non-convolutional
and convolutional architectures, automatically exploiting translation equivariance insofar
that is appropriate for the data.

In addition to the above two limitations, we have no understanding of what the CNNs inside
convolutional neural processes could be doing. In Appendix D, we perform a preliminary
exploration of what could be happening inside a ConvCNP. In this exploration, we explicitly
construct a ConvCNP that approximates the predictive mean of a Gaussian process.

We also proposed the class of Gaussian neural process (GNPs): the GNP (Model 5.9), the
ConvGNP (also a ConvNP; Model 5.12), and the FullConvGNP (also a ConvNP; Model 5.13).
Gaussian neural processes address the inability of conditional neural processes to generate
coherent samples by directly parametrising covariances between target outputs. In addition,
GNPs can be trained without approximations, maintaining a simple objective. The main
limitation of GNPs is that these models can only produce Gaussian predictions. Another
class that models dependencies between target outputs is the class of latent-variable neural
processes (LNPs; Garnelo et al., 2018b). Compared to GNPs, LNP can even produce non-
Gaussian predictions. Training LNPs with the neural process objective (Definition 2.2),
however, requires additional approximations.

87

Finally, we argued that a conditional neural process can be trainedwithout anymodifications
to the model or training procedure and, at test time, can be applied in an autoregressive
fashion (Procedure 5.14). We call CNPs deployed in this way autoregressive CNPs (AR CNPs).
Like LNPs, ARCNPs can produce flexible non-Gaussian predictions; and like GNPs, ARCNPs
can be trained without additional approximations. In the limit of infinite data, AR CNPs are
even guaranteed to perform better than GNPs (Proposition 5.15). Instead, what we give up is
that AR CNPs are no longer consistent probabilistic meta-learning algorithms (Section 2.1),
which means that the predictions of AR CNPs are no longer stochastic processes. This lack
of consistency, unfortunately, comes with a wide array of new issues. For example, the
quality of the predictions depends on the ordering and the number of target points. See
Section 5.6 for a more detailed discussion. Another downside of AR CNPs is that making
predictions for N target points now requires N forward passes of the neural process,
incurring substantial computational cost. AR CNPs equip the neural process framework
with a new knob where modelling complexity and computational expense at training time
can be traded for computational expense at test time.

In addition to the models proposed in this chapter, we remark that a plethora of other
approaches are possible. For example, we could construct GNPs by parametrising the
kernel map not through the eigenmap nor using Theorem 4.9. Moreover, we could consider
mixtures of CNPs and GNPs, or CNPs and GNPs could be turned into non-Gaussian models
by transforming the marginals using an invertible transform. We could even consider using
GNPs—or AR CNPs, if one is courageous enough—as encoders and/or decoders inside LNPs,
attempting to combine the benefits of different classes of neural processes.

88

6 | Convolutional Neural Processes
in Practice

Abstract. In the previous chapter, we proposed a variety of new neural process models.
In this chapter, we put these models to the test. We establish the general strengths and
weaknesses of the various classes of neural processes, and we demonstrate that neural
processes can be deployed in a variety of applications.

Outline. Section 6.2 performs a large-scale bake-off between a variety of neural process
models. In Section 6.3, we apply neural processes to perform sim-to-real transfer. Afterwards,
in Section 6.4, we challenge the models on an electroencephalography data set. Finally, in
Section 6.5, we use neural processes for statistical downscaling.

Attributions and relationship to priorwork. The results in this chapter are not published.
The synthetic experiments in Section 6.3 build on the setup by Gordon, Bruinsma, Foong,
Requeima, Dubois, and Turner (2020), Foong, Bruinsma, Gordon, Dubois, Requeima, and
Turner (2020), Bruinsma, Requeima, Foong, Gordon, and Turner (2021c), and Markou,
Requeima, Bruinsma, Vaughan, and Turner (2022). The predator–prey experiment in
Section 6.3 builds on the setup by Gordon et al. (2020) and Markou et al. (2022). The EEG
experiment in Section 6.4 builds on the setup by Gordon et al. (2020) and Markou et al. (2022).
The climate downscaling experiment in Section 6.5 follows the setup by Markou et al. (2022).
Although the results in this chapter are new, the original climate experiment was performed
by Anna Vaughan and Stratis Markou. Some sentences or parts of sentences are copied
verbatim from Markou et al. (2022). The MLP ConvGNP was originally developed by Anna
Vaughan and Stratis Markou, and the multiscale architecture for the AR ConvCNP was
developed in collaboration with Anna Vaughan. For the climate downscaling experiment
in this chapter, Anna Vaughan prepared the 25 ERA-Interim reanalysis variables and the
1 km–resolution elevation data. Generally, Anna Vaughan contributed substantially by
always being available for discussions and helping out with the data whenever the author
got stuck. All work was supervised by Richard E. Turner.

89

6.1 Introduction

In the previous chapter, we proposed a number of new neural process models: the Convo-
lutional Conditional Neural Process (ConvCNP; Model 5.4), the Gaussian Neural Process
(GNP; Model 5.9), the Convolutional Gaussian Neural Process (ConvGNP; Model 5.12), and
the Fully Convolutional Gaussian Neural Process (FullConvGNP; Model 5.13). Moreover, we
proposed that the original Conditional Neural Process (CNP; Garnelo et al., 2018a) and the
ConvCNP can be deployed in an autoregressive fashion (Procedure 5.14 and Section 5.6);
we abbreviated this application of the CNP and ConvCNP by AR CNP and AR ConvCNP
respectively. In this chapter, we put these new models and approaches to the test. The
goal of this chapter is twofold: to establish the strengths and weaknesses of these newly
proposed models, especially in relation to existing neural processes; and to demonstrate
that neural processes can be deployed in a variety of applications.

The new models constitute three new classes of neural processes. First, the class of convo-
lutional neural processes (ConvNPs; Section 5.3) embeds translation equivariance (Defin-
ition 2.4) into the models. The class of ConvNPs consists of the ConvCNP, ConvGNP,
FullConvGNP, and AR ConvCNP. Second, the class of Gaussian neural processes (GNPs;
Section 5.5) directly parametrises covariances between target outputs. The class of GNPs
consists of the GNP, ConvGNP, and FullConvGNP. Third, the class of autoregressive condi-
tional neural processes (AR CNPs; Section 5.6) train a conditional neural process as usual
but deploy the model in an autoregressive fashion. The class of AR CNPs consists of the AR
CNP and AR ConvCNP.

We will benchmark the proposed models against the following existing neural process
models: the original CNP, the Neural Process (NP; Garnelo et al., 2018b), the Attentive
Neural Process (ANP; Kim et al., 2019), and the Convolutional Neural Process (ConvNP;
Foong et al., 2020). The ConvNP is the natural latent variable variant of the ConvCNP,
but the ConvNP is not presented in this thesis. In addition to these four models we throw
three additional variants of the ANP into the mix: the Conditional Attentive Neural Process
(ACNP), the autoregressive ACNP (AR ACNP), and the Attentive Gaussian Neural Process
(AGNP). The ACNP is the ANP, but without the latent variable. The AGNP is the extension
of the ACNP that directly parametrises covariances between target outputs, exactly like
how Model 5.9 extends Model 5.1; see Appendix E.1. Table 6.1 shows an overview of the
existing models and the newly proposed models.

In Sections 6.2 to 6.5, we will analyse the properties of these neural process models and
demonstrate that neural processes can be applied in a variety of different settings. To these
ends, we will conduct four experiments. First, in Section 6.2, we run all models in Table 6.1

90

Table 6.1: Overview of all neural process models evaluated in experiments in this chapter. These
models can be divided into the groups of conditional neural processes (CNP; Garnelo et al., 2018a),
autoregressive conditional neural processes (AR CNPs; Section 5.6), and neural processes (NPs;
Garnelo et al., 2018b). Alternatively, these models can be divided into the groups of deep set–
based neural processes (Garnelo et al., 2018a), attentive neural processes (Kim et al., 2019), and
convolutional neural processes (Section 5.3). Starred models are models proposed in this thesis.

Deep set based Attentive Convolutional
(Garnelo et al., 2018a) (Kim et al., 2019) (Section 5.3)

CNPs (Garnelo et al., 2018a) CNP [1] ACNP [5] ConvCNP∗ [9]
AR CNPs (Section 5.6) CNP (AR)∗ [2] ACNP (AR)∗ [6] ConvCNP (AR)∗ [10]
GNPs (Section 5.5) GNP∗ [3] AGNP∗ [7] ConvGNP∗ [11]

FullConvGNP∗ [12]
NPs (Garnelo et al., 2018b) NP [4] ANP [8] ConvNP [13]

[1] Conditional Neural Process (Garnelo et al., 2018a)
[2] Autoregressive Conditional Neural Process (Section 5.6)
[3] Gaussian Neural Process (Model 5.9; Section 5.5)
[4] Neural Process (Garnelo et al., 2018b)
[5] Attentive Conditional Neural Process (Kim et al., 2019)
[6] Attentive Autoregressive Conditional Neural Process (Section 5.6)
[7] Attentive Gaussian Neural Process (Appendix E.1; Section 5.5)
[8] Attentive Neural Process (Kim et al., 2019)
[9] Convolutional Conditional Neural Process (Model 5.4; Section 5.3)
[10] Convolutional Autoregressive Conditional Neural Process (Section 5.6)
[11] Convolutional Gaussian Neural Process (Model 5.12; Section 5.5)
[12] Fully Convolutional Gaussian Neural Process (Model 5.13; Section 5.5)
[13] Convolutional Neural Process (Foong et al., 2020)

in 60 different subexperiments involving synthetically generated data. The purpose of this
experiment is to evaluate the models in cases where the ground truth is known. Afterwards,
in Section 6.3, we investigate the ability of neural processes to perform in a setting called
sim-to-real transfer. In the setting of sim-to-real transfer, the neural process is trained on
data generated by a data simulator. After the model is trained on this synthetic source of
data, the neural process is applied to real data. In this manner, the neural process facilitates
a way in which data simulators can be used to make predictions. In Section 6.4, we apply
neural processes to a challenging electroencephalography data set (Zhang et al., 1995),
pushing the limits of the models. Last, in Section 6.5, we use neural processes to perform a
climate science application called statistical downscaling (Maraun et al., 2018).

For each experiment, we will detail the data and the experimental setup. A precise descrip-
tion of the architectures of the models, however, is deferred to Appendix E.1. We only
remark that the convolutional neural processes use a U-Net architecture (Ronneberger et al.,
2015), and that all GNPs, in addition to a covariance matrix over the target points, also
produce heterogeneous observation noise. All models are configured in a way that makes
comparisons fair and ensures that every model has sufficient capacity. We train the models

91

on NVIDIA Tesla V100s with 16GB memory. The general training, cross-validation, and
evaluation protocols are described in Appendix E.2. Sometimes we reduce the size of the
architecture of a model to make sure that the model fits in memory and takes reasonable
time to train; these changes are documented in Appendices E.3 to E.6.

In all experiments, we will measure performance with the average log-probability of the
target set under the prediction given the context set normalised by the number of target
points. For this metric, a small increase x can roughly be interpreted as tightening the
model’s predictions across the board by a fraction x on average. More precisely, suppose
that, for every target point, the prediction by the ground-truth stochastic process is the
uniform distribution over some interval. Also suppose that the predictions by some model
are uniform distributions over some intervals. Then, for small x, an x increase in the metric
corresponds to, on average, shrinking the model’s predicted intervals by roughly a fraction
x, whilst at all times ensuring that the ground-truth intervals are entirely contained in
the model’s predictions. We now state that the smallest such shrinkage that we deem
practically significant is 1%. Hence, the smallest increase in the metric that we deem
practically significant is roughly 0.01. We therefore decide to show all log-likelihoods up to
two decimal places.

All experiments can be reproduced by appropriately calling train.py in the root of https:
//github.com/wesselb/neuralprocesses. Please see the documentation of the repository
and train.py --help for more detailed instructions.

6.2 Synthetic Experiments

In the first experiment, we determine the strengths and weaknesses of all models in Table 6.1
by performing a large-scale bake-off. For five synthetically generated data sets with four
configurations each, we evaluate every model in three different ways, totalling 60 subexperi-
ments per model. We first detail the experimental setup and then describe the results.

We synthetically generate data sets by randomly sampling from five different choices for
the ground-truth stochastic process f . Let the inputs be dx-dimensional. Then define the
following stochastic processes:

EQ: a Gaussian process with an exponentiated quadratic (EQ) kernel:

f ∼ GP(0, exp(− 1
2ℓ2
∥x− x′∥22)) (6.1)

where ℓ > 0 is a length scale;

92

https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0
f(
x
)

(a) dx = 1, dy = 1

2 1 0 1 2
x

1.0

0.5

0.0

0.5

f(
x
)

2 1 0 1 2
x

1.25

1.00

0.75

0.50

0.25

(b) dx = 1, dy = 2

2 1 0 1 2
x1

2

1

0

1

2

x
2

0.0

0.2

0.4

0.6

0.8

1.0
f(
x
)

(c) dx = 2, dy = 1

2 1 0 1 2
x1

x
2

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

f(
x
)

(d) dx = 2, dy = 2

Figure 6.1: Samples from the sawtooth data process with one and two-dimensional inputs (dx = 1
and dx = 2) and one and two-dimensional outputs (dy = 1 and dy = 2)

Matérn–5
2
: a Gaussian process with a Matérn–5

2
kernel:

f ∼ GP(0, k(1
ℓ
∥x− x′∥2)) (6.2)

where k(r) = (1 +
√
5r + 5

3
r2)e−r and ℓ > 0 is a length scale;

weakly periodic: a Gaussian process with a weakly periodic kernel:

f ∼ GP(0, exp(− 1
2ℓ2d
∥x− x′∥22 − 2

ℓ2p
∥sin(π

p
(x− x′))∥22)) (6.3)

where ℓd > 0 is a length scale specifying how quickly the periodic
pattern changes, ℓp > 0 a length scale of the periodic pattern, and p > 0

the period; and where the application of sin is elementwise;

sawtooth: a sawtooth process with a random frequency, direction, and phase:

f = ω⟨x,u⟩2 + ϕ mod 1 (6.4)

where ω ∼ Unif(Ω) is the frequency of the sawtooth wave, u ∼
Unif({x ∈ Rdx : ∥x∥2 = 1}) the direction, and ϕ ∼ Unif([0, 1])

93

the phase;

mixture: with equal probability, sample f from the EQ process, Matérn–5
2
process,

weakly periodic process, or sawtooth process.

We will call these stochastic processes the data processes. The data processes are stochastic
processes with dx-dimensional inputs and one-dimensional outputs. We will turn them
into processes with dy-dimensional outputs according to the following procedure: sample
from the one-dimensional-output prior dy times; and, for these dy samples, take dy different
linear combinations. The coefficients of these linear combinations are once independently
drawn from N (0, 1) and then fixed. We will consider one (dx = 1) and two-dimensional
inputs (dx = 2); and one (dy = 1) and two-dimensional outputs (dy = 2); yielding four
configurations per data process. Whereas thus far we only considered one-dimensional
inputs and outputs, these configurations will generate context and target sets with poten-
tially multidimensional inputs and outputs. We choose the parameters of the data processes
based on the input dimensionality dx:

ℓ = c · 1
4
, ℓd = c · 1

2
, ℓs = c, p = c · 1

4
, Ω = [c−1 · 2, c−1 · 4] (6.5)

with c =
√
dx. Scaling with the input dimensionality aims to roughly ensure that data

with one-dimensional inputs and data with two-dimensional inputs are equally difficult.
Figure 6.1 illustrates the sawtooth data process in all four configurations.

We will construct data sets by sampling inputs uniformly at random from X = [−2, 2]dx

and then sampling outputs from one of the data processes. We will colloquially call X the
training range. For the EQ, Matérn–5

2
, and weakly periodic process, but not for the sawtooth

process1, we also add independent Gaussian noise with variance 0.05. The numbers of
context and target points are as follows. For the EQ, Matérn–5

2
, and weakly periodic process,

the number of context points is chosen uniformly at random from {0, . . . , 30 · dx} and the
number of targets points is fixed to 50 · dx. For the sawtooth and mixture process, the
number of context points is chosen uniformly at random from {0, . . . , 75 · dx} and the
number of targets points is fixed to 100 · dx. In the case of a multidimensional-output data
process, we separately sample the number and positions of the context and target inputs
for every output dimension.

For every data process and each of the four configurations, we train every model from
Table 6.1 and evaluate the model in three different ways. First, we evaluate the model on
data generated exactly like the training data. This task is called interpolation and abbreviated

1 The sawtooth process is already challenging enough.

94

“int.” in the tables of results. The interpolation task measures how well a model fits the data
and is the primary measure of performance. Second, we evaluate the model on data with
inputs sampled from [2, 6]dx . This task is called out-of-input-distribution (OOID) interpolation
and abbreviated “OOID” in the tables of results. OOID interpolation measures how well a
model generalises to data sampled from other regions of the input space. Third, we evaluate
the model on data with context inputs sampled from [−2, 2]dx and target inputs sampled
from [2, 6]dx . This task is called extrapolation and abbreviated “ext.” in the tables of results.
The extrapolation task measures how well predictions based on data in the training range
generalise to other regions of the input space.

Further details on the setup and execution of this experiment can be found in Appendices E.1
to E.3. Appendix E.1 describes the general architectures of the models, Appendix E.2
describes the general training, cross-validation, and evaluation protocols, and Appendix E.3
describes details specific to this experiment.

Results. In the description of the results, we call the experiments with the EQ, Matérn–5
2
,

and weakly periodic processes the Gaussian experiments and the experiments with the
sawtooth and mixture processes the non-Gaussian experiments. On the page after next page,
Table 6.2 summarises the results of the Gaussian experiments, and Table 6.3 summarises
the results of the non-Gaussian experiments. After these summaries, the next ten pages
show the full results: Tables 6.4 and 6.5 tabulate the results for the EQ process, Tables 6.6
and 6.7 tabulate the results for the Matérn–5

2
process, Tables 6.8 and 6.9 tabulate the results

for the weakly periodic process, Tables 6.10 and 6.11 tabulate the results for the sawtooth
process, and Tables 6.12 and 6.13 tabulate the results for the mixture process.

A word of caution. After this page, we will proceed to present all aforementioned tables.
The description of the results started in the next paragraph will continue after these tables.
In the tables, every LNP occurs three times, corresponding to different combinations of
training and evaluation objectives; see Appendix E.2. As this thesis is primarily concerned
with non-latent-variable neural processes, we will consider the performance of an LNP to
simply be the best of the three numbers.

Performance of CNPs in Gaussian experiments. In the Gaussian experiments, the
ground-truth f is a Gaussian process, so we can compute the conditional neural process
approximation (CNPA; Definition 3.24). Recall that the CNPA is what a CNP converges
to in the limit of infinite data; the CNPA provides an upper bound on the performance of
a CNP. The CNPA is given by taking the mean map (Definition 3.18) and variance map
(Definition 3.20) of the posterior prediction map (Proposition 3.26). Taking the variance map
rather than the kernel map (Definition 3.19) discards correlations, so the CNPA is, in some
sense, a diagonalised version of the posterior prediction map πf . This diagonalised version

95

Table 6.2: For the Gaussian experiments, average Kullback–Leibler divergences of the posterior
prediction map πf with respect to the model normalised by the number of target points. Shows
for one-dimensional inputs (1D; dx = 1) and two-dimensional inputs (2D; dy = 2) the performance
for interpolation within the range [−2, 2]dx where the models were trained (“Int.”); interpolation
within the range [2, 6]dx which the models have never seen before (“OOID”); and extrapolation from
the range [−2, 2]dx to the range [2, 6]dx (“Ext.”). Models are ordered by interpolation performance
for one-dimensional inputs. The latent variable models are trained and evaluated with the ELBO
objective (ELBO); trained and evaluated with the ML objective (ML); and trained with the ELBO
objective and evaluated with the ML objective (ELBO–ML; E.–M.). Diagonal GP refers to predictions
by the ground-truth Gaussian processes without correlations. Trivial refers to predicting the
empirical means and standard deviation of the test data. Errors indicate the central 95%-confidence
interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are very
large are marked as failed with “F”. Numbers which are missing could not be run.

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

FullConvGNP 0.01±0.00 0.01±0.00 0.00±0.00

ConvCNP (AR) 0.03±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.02±0.00

ConvGNP 0.04±0.00 0.04±0.00 1.75±0.12 0.12±0.00 0.12±0.00 0.71±0.03

AGNP 0.10±0.00 4.34±0.17 5.45±0.23 0.17±0.00 0.62±0.01 0.39±0.01

ConvNP (ELBO) 0.19±0.01 0.19±0.01 0.29±0.03 0.39±0.01 0.39±0.01 0.36±0.01

ACNP (AR) 0.24±0.01 1.08±0.02 0.86±0.01 0.13±0.00 0.57±0.01 0.40±0.01

GNP 0.25±0.01 F F 0.25±0.01 0.75±0.01 0.57±0.00

ConvNP (ML) 0.31±0.01 0.31±0.01 0.64±0.01 0.28±0.01 0.28±0.01 0.36±0.01

Diagonal GP 0.42±0.02 0.42±0.02 0.84±0.01 0.29±0.01 0.29±0.01 0.40±0.01

ANP (ML) 0.43±0.01 1.03±0.02 0.78±0.01 0.31±0.01 0.55±0.01 0.39±0.01

ConvCNP 0.43±0.02 0.43±0.02 0.84±0.01 0.30±0.01 0.30±0.01 0.40±0.01

CNP (AR) 0.46±0.01 F F 0.36±0.01 F F
NP (ELBO) 0.51±0.01 F 4.34±0.76 0.40±0.01 3.03±1.68 0.60±0.01

NP (ELBO–ML) 0.52±0.02 F 2.39±0.33 0.39±0.01 2.35±1.06 0.57±0.01

ANP (ELBO–ML) 0.53±0.01 1.12±0.03 0.85±0.02 0.42±0.01 0.78±1.72 0.41±0.01

ACNP 0.54±0.02 1.11±0.02 0.84±0.01 0.34±0.01 0.57±0.01 0.40±0.01

ANP (ELBO) 0.54±0.01 1.60±0.06 1.25±0.03 0.43±0.01 1.06±3.04 0.42±0.01

NP (ML) 0.59±0.01 F 1.13±0.01 0.41±0.01 0.88±0.03 0.52±0.01

CNP 0.63±0.01 F 1.08±0.02 0.43±0.01 1.16±0.45 0.52±0.01

Trivial 1.08±0.01 1.08±0.01 0.85±0.01 0.57±0.01 0.57±0.01 0.40±0.00

ConvNP (E.–M.) 2.01±0.11 2.01±0.11 5.95±0.16 0.44±0.01 0.44±0.01 0.47±0.01

96

Table 6.3: For the non-Gaussian experiments, average log-likelihoods normalised by the number
of target points. Shows for one-dimensional inputs (1D; dx = 1) and two-dimensional inputs (2D;
dy = 2) the performance for interpolation within the range [−2, 2]dx where the models were trained
(“Int.”); interpolation within the range [2, 6]dx which the models have never seen before (“OOID”);
and extrapolation from the range [−2, 2]dx to the range [2, 6]dx (“Ext.”). Models are ordered by
interpolation performance for one-dimensional inputs. The latent variable models are trained and
evaluated with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and
trained with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate
the central 95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced.
Numbers which are very large are marked as failed with “F”. Numbers which are missing could not
be run.

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

ConvCNP (AR) 1.62±0.04 1.62±0.04 1.33±0.04 0.56±0.03 0.56±0.03 0.29±0.03

ConvNP (ELBO) 1.62±0.05 1.61±0.05 0.92±0.04 0.06±0.03 0.06±0.03 −0.62±0.04

ConvNP (ML) 1.57±0.06 1.57±0.06 −0.26±0.03 0.26±0.04 0.26±0.04 −0.70±0.02

ConvGNP 1.43±0.08 1.44±0.06 −0.96±0.12 0.23±0.04 0.23±0.04 −0.79±0.02

FullConvGNP 1.36±0.08 1.37±0.07 −0.15±0.02

ConvCNP 1.19±0.08 1.20±0.06 −0.68±0.02 0.18±0.05 0.18±0.05 −0.86±0.03

ACNP (AR) 0.21±0.03 −0.86±0.03 −0.84±0.02 −0.53±0.02 −1.52±0.10 −1.51±0.09

ANP (ELBO–ML) 0.13±0.04 −0.97±0.04 −0.88±0.04 −0.67±0.03 −1.06±0.62 −0.70±0.03

ANP (ELBO) 0.11±0.04 F −3.04±0.08 −0.68±0.03 −2.59±7.64 −0.75±0.03

AGNP −0.12±0.03 −1.18±0.07 −1.64±0.12 −0.55±0.02 −0.79±0.02 −0.76±0.03

ACNP −0.17±0.03 −0.84±0.03 −0.86±0.03 −0.60±0.02 −1.50±0.10 −0.73±0.03

ANP (ML) −0.17±0.03 −0.69±0.03 −0.68±0.03 −0.53±0.02 −0.74±0.04 −0.69±0.02

NP (ELBO–ML) −0.29±0.02 F F −0.66±0.02 F −0.96±0.03

NP (ELBO) −0.30±0.02 F F −0.66±0.02 F F
GNP −0.37±0.02 F F −0.69±0.02 −0.74±0.04 −0.70±0.03

NP (ML) −0.48±0.02 −2.90±0.39 −0.81±0.03 −0.62±0.02 −1.50±0.11 −0.75±0.03

CNP (AR) −0.65±0.02 −4.14±7.34 −1.23±0.13 −0.69±0.02 −1.05±0.07 −0.72±0.03

CNP −0.66±0.02 −1.65±0.25 −0.75±0.03 −0.69±0.02 −1.05±0.08 −0.71±0.03

Trivial −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00

ConvNP (E.–M.) −6.57±3.76 −6.68±3.76 F −0.04±0.05 −0.04±0.05 −1.47±0.87

97

Table 6.4: For the EQ synthetic experiments with one-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πf with respect to the model normalised by the number
of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs
(dy = 2) the performance for interpolation within the range [−2, 2] where the models where trained
(“Int.”); interpolation within the range [2, 6] which the models have never seen before (“OOID”); and
extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation
performance. The latent variable models are trained and evaluated with the ELBO objective (ELBO);
trained and evaluated with the ML objective (ML); and trained with the ELBO objective and evaluated
with the ML objective (ELBO–ML; E.–M.). Diagonal GP refers to predictions by the ground-truth
Gaussian processes without correlations. Trivial refers to predicting the empirical means and
standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

EQ Int. OOID Ext.
dx=1, dy=1

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 3.46±0.08

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

AGNP 0.03±0.00 4.28±0.08 7.38±0.13

ConvNP (ELBO) 0.06±0.00 0.06±0.00 0.11±0.01

ACNP (AR) 0.07±0.00 1.19±0.01 0.98±0.01

GNP 0.08±0.00 F F
ConvNP (ML) 0.25±0.01 0.25±0.01 0.67±0.01

CNP (AR) 0.28±0.00 F F
ANP (ML) 0.31±0.01 1.04±0.01 0.84±0.01

NP (ELBO) 0.34±0.01 F 1.34±0.01

NP (ELBO–ML) 0.37±0.01 F 1.27±0.01

Diagonal GP 0.40±0.01 0.40±0.01 0.95±0.01

ConvCNP 0.41±0.01 0.41±0.01 0.95±0.01

ANP (ELBO–ML) 0.42±0.01 1.18±0.01 0.94±0.01

ANP (ELBO) 0.44±0.01 1.32±0.01 1.25±0.01

ACNP 0.45±0.01 1.22±0.01 0.95±0.01

NP (ML) 0.49±0.01 1.54±0.01 1.45±0.01

CNP 0.54±0.01 F 1.41±0.01

ConvNP (E.–M.) 0.90±0.04 0.90±0.04 4.05±0.06

Trivial 1.19±0.00 1.19±0.00 0.96±0.00

EQ Int. OOID Ext.
dx=1, dy=2

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 1.73±0.05

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

AGNP 0.04±0.00 7.71±0.10 7.87±0.10

ACNP (AR) 0.07±0.00 1.31±0.01 1.09±0.01

ConvNP (ELBO) 0.08±0.00 0.08±0.00 0.13±0.00

GNP 0.13±0.00 F F
ConvNP (ML) 0.36±0.01 0.36±0.01 0.88±0.00

ANP (ML) 0.41±0.01 1.23±0.01 0.99±0.00

CNP (AR) 0.42±0.00 F F
Diagonal GP 0.47±0.01 0.47±0.01 1.06±0.00

ConvCNP 0.48±0.01 0.48±0.01 1.06±0.00

ACNP 0.51±0.01 1.38±0.01 1.06±0.01

ANP (ELBO–ML) 0.52±0.01 1.47±0.02 1.07±0.01

ANP (ELBO) 0.53±0.01 3.79±0.05 2.84±0.02

NP (ELBO) 0.54±0.01 F 1.47±0.01

NP (ELBO–ML) 0.56±0.01 F 1.42±0.01

NP (ML) 0.64±0.00 F 1.52±0.00

CNP 0.66±0.01 F 1.28±0.00

Trivial 1.31±0.00 1.31±0.00 1.07±0.00

ConvNP (E.–M.) 2.14±0.06 2.14±0.06 9.30±0.08

98

Table 6.5: For the EQ synthetic experiments with two-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πf with respect to the model normalised by the number
of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs
(dy = 2) the performance for interpolation within the range [−2, 2]2 where the models where
trained (“Int.”); interpolation within the range [2, 6]2 which the models have never seen before
(“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered
by interpolation performance. The latent variable models are trained and evaluated with the ELBO
objective (ELBO); trained and evaluated with the ML objective (ML); and trained with the ELBO
objective and evaluated with the ML objective (ELBO–ML; E.–M.). Diagonal GP refers to predictions
by the ground-truth Gaussian processes without correlations. Trivial refers to predicting the
empirical means and standard deviation of the test data. Errors indicate the central 95%-confidence
interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are very
large are marked as failed with “F”. Numbers which are missing could not be run.

EQ Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ConvGNP 0.08±0.00 0.08±0.00 1.92±0.02

AGNP 0.09±0.00 0.70±0.00 0.50±0.00

ACNP (AR) 0.09±0.00 0.72±0.00 0.51±0.00

GNP 0.19±0.00 1.01±0.00 0.80±0.00

ConvNP (ML) 0.34±0.00 0.34±0.00 0.47±0.00

ANP (ML) 0.34±0.00 0.70±0.00 0.51±0.00

Diagonal GP 0.36±0.00 0.36±0.00 0.51±0.00

ConvCNP 0.37±0.00 0.37±0.00 0.51±0.00

ACNP 0.40±0.00 0.72±0.00 0.51±0.00

ConvNP (ELBO) 0.41±0.00 0.41±0.00 0.46±0.00

CNP (AR) 0.41±0.00 0.90±0.00 0.71±0.00

NP (ELBO–ML) 0.46±0.00 0.99±0.01 0.65±0.00

NP (ELBO) 0.48±0.00 1.04±0.01 0.67±0.00

ConvNP (E.–M.) 0.48±0.00 0.48±0.00 0.59±0.01

ANP (ELBO–ML) 0.49±0.01 0.72±0.00 0.51±0.00

ANP (ELBO) 0.50±0.01 0.73±0.00 0.52±0.00

NP (ML) 0.51±0.00 0.92±0.00 0.72±0.00

CNP 0.52±0.00 0.92±0.00 0.72±0.00

Trivial 0.72±0.00 0.72±0.00 0.51±0.00

FullConvGNP

EQ Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) 0.03±0.00 0.03±0.00 0.02±0.00

ACNP (AR) 0.11±0.00 0.79±0.00 0.56±0.00

ConvGNP 0.19±0.00 0.19±0.00 0.74±0.01

AGNP 0.22±0.00 0.87±0.01 0.57±0.00

GNP 0.38±0.00 1.06±0.00 0.75±0.00

ConvNP (ML) 0.39±0.00 0.39±0.00 0.52±0.00

Diagonal GP 0.40±0.00 0.40±0.00 0.56±0.00

ConvCNP 0.41±0.00 0.41±0.00 0.56±0.00

ANP (ML) 0.42±0.00 0.79±0.00 0.54±0.00

ACNP 0.44±0.00 0.79±0.00 0.56±0.00

CNP (AR) 0.52±0.00 F F
NP (ELBO–ML) 0.56±0.00 1.95±0.03 0.72±0.00

ANP (ELBO–ML) 0.56±0.00 1.90±1.72 0.55±0.00

NP (ELBO) 0.57±0.00 1.99±0.03 0.72±0.00

ANP (ELBO) 0.57±0.00 3.51±3.04 0.56±0.00

NP (ML) 0.59±0.00 1.17±0.01 0.75±0.00

CNP 0.60±0.00 3.08±0.42 0.66±0.00

Trivial 0.79±0.00 0.79±0.00 0.56±0.00

ConvNP (E.–M.) 0.79±0.00 0.79±0.00 0.56±0.00

ConvNP (ELBO) 0.79±0.00 0.79±0.00 0.56±0.00

FullConvGNP

99

Table 6.6: For the Matérn–5
2 synthetic experiments with one-dimensional inputs, average Kullback–

Leibler divergences of the posterior prediction map πf with respect to the model normalised by the
number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs
(dy = 2) the performance for interpolation within the range [−2, 2] where the models where trained
(“Int.”); interpolation within the range [2, 6] which the models have never seen before (“OOID”); and
extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation
performance. The latent variable models are trained and evaluated with the ELBO objective (ELBO);
trained and evaluated with the ML objective (ML); and trained with the ELBO objective and evaluated
with the ML objective (ELBO–ML; E.–M.). Diagonal GP refers to predictions by the ground-truth
Gaussian processes without correlations. Trivial refers to predicting the empirical means and
standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

Matérn– 5
2 Int. OOID Ext.

dx=1, dy=1

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvCNP (AR) 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 2.32±0.06

AGNP 0.03±0.00 4.53±0.08 7.22±0.12

ACNP (AR) 0.04±0.00 1.08±0.01 0.87±0.01

GNP 0.09±0.00 F F
ConvNP (ELBO) 0.13±0.00 0.13±0.00 0.31±0.02

ConvNP (ML) 0.26±0.01 0.26±0.01 0.58±0.00

ANP (ML) 0.30±0.00 0.98±0.01 0.78±0.01

CNP (AR) 0.34±0.01 1.81±0.04 1.32±0.02

NP (ELBO) 0.36±0.00 F 1.31±0.01

NP (ELBO–ML) 0.37±0.01 F 1.14±0.00

Diagonal GP 0.40±0.01 0.40±0.01 0.84±0.01

ConvCNP 0.40±0.01 0.40±0.01 0.84±0.01

ANP (ELBO–ML) 0.41±0.01 1.13±0.01 0.84±0.01

ACNP 0.42±0.01 1.10±0.01 0.84±0.01

ANP (ELBO) 0.43±0.01 1.15±0.01 0.87±0.01

NP (ML) 0.51±0.00 1.87±0.02 1.30±0.01

CNP 0.54±0.01 1.47±0.02 1.11±0.01

Trivial 1.08±0.00 1.08±0.00 0.85±0.00

ConvNP (E.–M.) 1.37±0.04 1.36±0.04 4.30±0.06

Matérn– 5
2 Int. OOID Ext.

dx=1, dy=2

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ConvGNP 0.02±0.00 0.02±0.00 1.71±0.04

AGNP 0.04±0.00 6.14±0.08 7.03±0.09

ACNP (AR) 0.05±0.00 1.18±0.01 0.96±0.01

GNP 0.13±0.00 F F
ConvNP (ELBO) 0.16±0.00 0.16±0.00 0.29±0.00

ConvNP (ML) 0.36±0.00 0.36±0.00 0.76±0.00

ANP (ML) 0.40±0.00 1.10±0.01 0.88±0.00

CNP (AR) 0.45±0.00 F F
Diagonal GP 0.46±0.01 0.46±0.01 0.93±0.00

ConvCNP 0.46±0.01 0.46±0.01 0.93±0.00

ACNP 0.49±0.01 1.23±0.01 0.93±0.00

ANP (ELBO–ML) 0.51±0.01 1.28±0.01 0.99±0.01

ANP (ELBO) 0.51±0.01 1.43±0.02 1.10±0.01

NP (ELBO–ML) 0.54±0.00 F 1.24±0.00

NP (ELBO) 0.54±0.00 F 1.79±0.01

NP (ML) 0.63±0.00 2.33±0.02 1.23±0.00

CNP 0.65±0.00 7.72±0.69 1.23±0.00

Trivial 1.18±0.00 1.18±0.00 0.94±0.00

ConvNP (E.–M.) 3.07±0.06 3.06±0.06 9.83±0.09

100

Table 6.7: For the Matérn–5
2 synthetic experiments with two-dimensional inputs, average Kullback–

Leibler divergences of the posterior prediction map πf with respect to the model normalised by
the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional
outputs (dy = 2) the performance for interpolation within the range [−2, 2]2 where the models
where trained (“Int.”); interpolation within the range [2, 6]2 which the models have never seen before
(“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered
by interpolation performance. Diagonal GP refers to predictions by the ground-truth Gaussian
processes without correlations. Trivial refers to predicting the empirical means and standard
deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with
“F”. Numbers which are missing could not be run.

Matérn– 5
2 Int. OOID Ext.

dx=2, dy=1

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.00±0.00

ACNP (AR) 0.05±0.00 0.54±0.00 0.38±0.00

AGNP 0.08±0.00 0.83±0.01 0.37±0.00

ConvGNP 0.08±0.00 0.08±0.00 0.60±0.01

GNP 0.16±0.00 0.90±0.00 0.75±0.00

ConvNP (ML) 0.25±0.00 0.25±0.00 0.34±0.00

ANP (ML) 0.26±0.00 0.51±0.00 0.37±0.00

Diagonal GP 0.28±0.00 0.28±0.00 0.39±0.00

ConvCNP 0.28±0.00 0.28±0.00 0.39±0.00

ACNP 0.29±0.00 0.54±0.00 0.39±0.00

CNP (AR) 0.31±0.00 0.69±0.00 0.52±0.00

ConvNP (ELBO) 0.32±0.00 0.32±0.00 0.30±0.00

NP (ELBO–ML) 0.34±0.00 1.07±0.01 0.69±0.00

NP (ELBO) 0.35±0.00 1.25±0.01 0.72±0.00

ConvNP (E.–M.) 0.36±0.00 0.36±0.00 0.43±0.00

NP (ML) 0.37±0.00 0.75±0.01 0.51±0.00

ANP (ELBO–ML) 0.39±0.00 0.65±0.01 0.43±0.00

CNP 0.39±0.00 0.67±0.00 0.54±0.00

ANP (ELBO) 0.41±0.01 0.67±0.01 0.44±0.00

Trivial 0.55±0.00 0.55±0.00 0.39±0.00

FullConvGNP

Matérn– 5
2 Int. OOID Ext.

dx=2, dy=2

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ACNP (AR) 0.06±0.00 0.58±0.00 0.41±0.00

ConvGNP 0.14±0.00 0.14±0.00 0.64±0.01

AGNP 0.17±0.00 0.58±0.00 0.40±0.00

GNP 0.28±0.00 0.78±0.00 0.60±0.00

ConvNP (ML) 0.29±0.00 0.29±0.00 0.38±0.00

ANP (ML) 0.29±0.00 0.56±0.00 0.40±0.00

Diagonal GP 0.30±0.00 0.30±0.00 0.41±0.00

ConvCNP 0.30±0.00 0.30±0.00 0.41±0.00

ACNP 0.32±0.00 0.58±0.00 0.41±0.00

ConvNP (ELBO) 0.36±0.00 0.36±0.00 0.37±0.00

CNP (AR) 0.37±0.00 F 0.88±0.17

NP (ELBO–ML) 0.41±0.00 2.29±0.05 0.59±0.00

NP (ELBO) 0.41±0.00 2.36±0.05 0.60±0.00

ANP (ELBO–ML) 0.42±0.00 0.61±0.00 0.41±0.00

ANP (ELBO) 0.42±0.00 0.61±0.00 0.41±0.00

NP (ML) 0.43±0.00 0.68±0.00 0.53±0.00

CNP 0.44±0.00 0.86±0.17 0.59±0.00

ConvNP (E.–M.) 0.49±0.00 0.49±0.00 0.61±0.00

Trivial 0.58±0.00 0.58±0.00 0.41±0.00

FullConvGNP

101

Table 6.8: For the weakly periodic synthetic experiments with one-dimensional inputs, average
Kullback–Leibler divergences of the posterior predictionmapπf with respect to themodel normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional
outputs (dy = 2) the performance for interpolation within the range [−2, 2] where the models
where trained (“Int.”); interpolation within the range [2, 6] which the models have never seen before
(“OOID”); and extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by
interpolation performance. The latent variable models are trained and evaluated with the ELBO
objective (ELBO); trained and evaluated with the ML objective (ML); and trained with the ELBO
objective and evaluated with the ML objective (ELBO–ML; E.–M.). Diagonal GP refers to predictions
by the ground-truth Gaussian processes without correlations. Trivial refers to predicting the
empirical means and standard deviation of the test data. Errors indicate the central 95%-confidence
interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are very
large are marked as failed with “F”. Numbers which are missing could not be run.

Weakly Periodic Int. OOID Ext.
dx=1, dy=1

FullConvGNP 0.02±0.00 0.02±0.00 0.00±0.00

ConvCNP (AR) 0.05±0.00 0.05±0.00 0.04±0.00

ConvGNP 0.05±0.00 0.05±0.00 0.56±0.02

AGNP 0.22±0.00 1.25±0.02 1.25±0.02

ConvNP (ML) 0.28±0.00 0.28±0.00 0.43±0.00

ConvNP (ELBO) 0.34±0.00 0.33±0.00 0.45±0.02

Diagonal GP 0.38±0.01 0.38±0.01 0.59±0.01

ConvCNP 0.40±0.01 0.40±0.01 0.60±0.01

ANP (ML) 0.53±0.00 0.77±0.01 0.57±0.01

ACNP (AR) 0.57±0.01 0.82±0.01 0.61±0.01

GNP 0.59±0.01 1.31±0.02 0.62±0.01

CNP (AR) 0.59±0.01 2.33±0.27 1.46±0.05

NP (ELBO–ML) 0.60±0.01 F 4.09±0.28

ANP (ELBO–ML) 0.60±0.01 0.78±0.01 0.59±0.01

NP (ML) 0.60±0.01 0.80±0.01 0.62±0.01

NP (ELBO) 0.61±0.01 F 9.91±0.70

ANP (ELBO) 0.62±0.01 1.01±0.01 0.71±0.01

ACNP 0.65±0.01 0.82±0.01 0.61±0.01

CNP 0.67±0.01 1.45±0.03 0.68±0.01

Trivial 0.82±0.00 0.82±0.00 0.61±0.00

ConvNP (E.–M.) 1.58±0.03 1.57±0.03 2.85±0.04

Weakly Periodic Int. OOID Ext.
dx=1, dy=2

FullConvGNP 0.03±0.00 0.03±0.00 0.00±0.00

ConvCNP (AR) 0.09±0.00 0.09±0.00 0.06±0.00

ConvGNP 0.12±0.00 0.12±0.00 0.72±0.01

AGNP 0.25±0.00 2.17±0.02 1.95±0.02

ConvNP (ML) 0.38±0.00 0.38±0.00 0.54±0.00

ConvNP (ELBO) 0.39±0.00 0.39±0.00 0.44±0.00

Diagonal GP 0.42±0.00 0.42±0.00 0.65±0.00

ConvCNP 0.46±0.00 0.46±0.00 0.65±0.00

GNP 0.50±0.00 1.02±0.01 0.76±0.00

ANP (ML) 0.62±0.00 1.04±0.01 0.64±0.00

ACNP (AR) 0.63±0.00 0.89±0.01 0.66±0.00

CNP (AR) 0.67±0.00 2.52±0.07 1.21±0.01

NP (ELBO–ML) 0.68±0.00 F 5.18±0.18

NP (ML) 0.69±0.00 1.26±0.01 0.68±0.01

NP (ELBO) 0.69±0.00 F F
ANP (ELBO–ML) 0.70±0.00 0.85±0.01 0.64±0.00

ACNP 0.71±0.00 0.89±0.01 0.66±0.00

ANP (ELBO) 0.72±0.00 0.93±0.01 0.72±0.00

CNP 0.74±0.00 1.27±0.01 0.77±0.01

Trivial 0.89±0.00 0.89±0.00 0.67±0.00

ConvNP (E.–M.) 3.02±0.03 3.02±0.03 5.40±0.04

102

Table 6.9: For the weakly periodic synthetic experiments with two-dimensional inputs, average
Kullback–Leibler divergences of the posterior predictionmapπf with respect to themodel normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional
outputs (dy = 2) the performance for interpolation within the range [−2, 2]2 where the models
where trained (“Int.”); interpolation within the range [2, 6]2 which the models have never seen
before (“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models
are ordered by interpolation performance. The latent variable models are trained and evaluated
with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and trained
with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). Diagonal GP
refers to predictions by the ground-truth Gaussian processes without correlations. Trivial refers to
predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers
which are very large are marked as failed with “F”. Numbers which are missing could not be run.

Weakly Periodic Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) 0.05±0.00 0.05±0.00 0.03±0.00

ConvGNP 0.10±0.00 0.10±0.00 0.19±0.00

ConvNP (ML) 0.18±0.00 0.18±0.00 0.21±0.00

Diagonal GP 0.19±0.00 0.19±0.00 0.27±0.00

ConvCNP 0.20±0.00 0.20±0.00 0.27±0.00

ConvNP (ELBO) 0.22±0.00 0.22±0.00 0.22±0.00

AGNP 0.23±0.00 0.35±0.00 0.26±0.00

ACNP (AR) 0.23±0.00 0.37±0.00 0.26±0.00

ConvNP (E.–M.) 0.23±0.00 0.23±0.00 0.29±0.00

GNP 0.23±0.00 0.35±0.00 0.24±0.00

CNP (AR) 0.25±0.00 0.82±0.01 0.72±0.01

ANP (ML) 0.25±0.00 0.36±0.00 0.25±0.00

NP (ML) 0.26±0.00 1.32±0.03 0.33±0.00

NP (ELBO–ML) 0.26±0.00 6.28±1.06 0.44±0.01

NP (ELBO) 0.27±0.00 9.91±1.68 0.52±0.01

ACNP 0.28±0.00 0.37±0.00 0.27±0.00

CNP 0.29±0.00 0.81±0.01 0.29±0.00

ANP (ELBO–ML) 0.31±0.00 0.39±0.00 0.26±0.00

ANP (ELBO) 0.32±0.00 0.42±0.00 0.29±0.00

Trivial 0.38±0.00 0.38±0.00 0.27±0.00

FullConvGNP

Weakly Periodic Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) 0.08±0.00 0.08±0.00 0.05±0.00

ConvGNP 0.13±0.00 0.13±0.00 0.18±0.00

Diagonal GP 0.20±0.00 0.20±0.00 0.28±0.00

ConvNP (ML) 0.21±0.00 0.21±0.00 0.25±0.00

ConvCNP 0.23±0.00 0.23±0.00 0.28±0.00

AGNP 0.24±0.00 0.39±0.00 0.27±0.00

ACNP (AR) 0.25±0.00 0.40±0.00 0.28±0.00

GNP 0.25±0.00 0.38±0.00 0.25±0.00

ConvNP (ELBO) 0.26±0.00 0.26±0.00 0.27±0.00

CNP (AR) 0.27±0.00 3.21±0.14 0.77±0.02

ANP (ML) 0.28±0.00 0.39±0.00 0.28±0.00

NP (ML) 0.29±0.00 0.42±0.00 0.31±0.00

NP (ELBO–ML) 0.29±0.00 1.52±0.04 0.36±0.00

NP (ELBO) 0.30±0.00 1.60±0.05 0.39±0.00

ConvNP (E.–M.) 0.30±0.00 0.30±0.00 0.34±0.00

ACNP 0.30±0.00 0.40±0.00 0.29±0.00

CNP 0.31±0.00 0.63±0.01 0.33±0.00

ANP (ELBO–ML) 0.36±0.00 0.43±0.00 0.28±0.00

ANP (ELBO) 0.36±0.00 0.44±0.00 0.29±0.00

Trivial 0.40±0.00 0.40±0.00 0.28±0.00

FullConvGNP

103

Table 6.10: For the sawtooth synthetic experiments with one-dimensional inputs, average log-
likelihoods normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]
where the models where trained (“Int.”); interpolation within the range [2, 6] which the models have
never seen before (“OOID”); and extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”).
Models are ordered by interpolation performance. The latent variable models are trained and
evaluated with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and
trained with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). “Conv” is
abbreviated with “Cv”. Trivial refers to predicting the empirical means and standard deviation of
the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly
best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers
which are missing could not be run.

Sawtooth Int. OOID Ext.
dx=1, dy=1

CvNP (ELBO) 3.71±0.01 3.71±0.01 2.79±0.02

CvGNP 3.70±0.04 3.71±0.04 0.19±0.11

CvCNP (AR) 3.65±0.01 3.66±0.01 3.36±0.01

CvNP (ML) 3.61±0.03 3.61±0.03 0.84±0.01

FullCvGNP 3.24±0.04 3.25±0.04 0.25±0.01

CvCNP 3.17±0.03 3.17±0.03 0.06±0.01

ANP (E.–M.) 1.01±0.02 −0.18±0.00 −0.30±0.01

ANP (ELBO) 1.01±0.02 F −7.55±0.06

NP (E.–M.) 0.26±0.01 F F
NP (ELBO) 0.26±0.01 F F
ANP (ML) 0.20±0.00 −0.18±0.00 −0.18±0.00

NP (ML) −0.18±0.00 −0.18±0.00 −0.18±0.00

Trivial −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

GNP −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

AGNP −0.18±0.00 −0.18±0.00 −0.18±0.00

CvNP (E.–M.) F F F

Sawtooth Int. OOID Ext.
dx=1, dy=2

CvNP (ML) 2.49±0.02 2.49±0.02 0.05±0.01

CvCNP (AR) 2.41±0.01 2.40±0.01 1.93±0.01

CvNP (ELBO) 2.32±0.01 2.32±0.01 1.65±0.01

FullCvGNP 2.03±0.06 2.05±0.04 0.18±0.00

CvCNP 1.85±0.02 1.85±0.02 −0.24±0.00

CvGNP 1.76±0.05 1.80±0.03 −0.24±0.00

ACNP (AR) 1.31±0.01 −0.48±0.01 −0.45±0.01

CvNP (E.–M.) 0.98±0.08 0.97±0.08 −6.48±0.04

ACNP 0.55±0.02 −0.44±0.01 −0.50±0.01

ANP (E.–M.) 0.54±0.02 −0.70±0.01 −0.36±0.00

ANP (ELBO) 0.53±0.02 −0.73±0.01 −0.37±0.00

AGNP 0.47±0.01 −0.38±0.01 −0.70±0.08

GNP −0.02±0.00 F F
NP (E.–M.) −0.08±0.01 F −1.37±0.00

NP (ELBO) −0.08±0.01 F −1.37±0.00

ANP (ML) −0.21±0.00 −0.33±0.00 −0.33±0.00

CNP (AR) −0.29±0.00 F −2.40±0.13

CNP −0.29±0.00 −3.97±0.25 −0.36±0.00

Trivial −0.32±0.00 −0.32±0.00 −0.32±0.00

NP (ML) −0.32±0.00 −0.32±0.00 −0.32±0.00

104

Table 6.11: For the sawtooth synthetic experiments with two-dimensional inputs, average log-
likelihoods normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]2
where the models where trained (“Int.”); interpolation within the range [2, 6]2 which the models have
never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”).
Models are ordered by interpolation performance. The latent variable models are trained and
evaluated with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and
trained with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). “Conv” is
abbreviated with “Cv”. Trivial refers to predicting the empirical means and standard deviation of
the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly
best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers
which are missing could not be run.

Sawtooth Int. OOID Ext.
dx=2, dy=1

CvCNP (AR) 2.59±0.01 2.59±0.01 2.10±0.01

CvNP (ML) 2.07±0.02 2.08±0.02 −0.17±0.00

CvCNP 1.93±0.04 1.94±0.03 −0.18±0.00

CvGNP 1.90±0.04 1.91±0.03 −0.18±0.00

CvNP (ELBO) 1.77±0.02 1.77±0.02 0.33±0.02

CvNP (E.–M.) 1.71±0.04 1.72±0.04 −2.30±0.87

Trivial −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP −0.18±0.00 −0.18±0.00 −0.18±0.00

GNP −0.18±0.00 −0.18±0.00 −0.18±0.00

NP (ML) −0.18±0.00 −0.18±0.00 −0.18±0.00

AGNP −0.18±0.00 −0.18±0.00 −0.18±0.00

ANP (ML) −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP −0.18±0.00 −0.18±0.00 −0.18±0.00

NP (E.–M.) −0.19±0.00 F −0.86±0.02

NP (ELBO) −0.19±0.00 F F
ANP (E.–M.) −0.20±0.01 −0.18±0.00 −0.18±0.00

ANP (ELBO) −0.20±0.01 −0.71±0.00 −0.33±0.00

FullCvGNP

Sawtooth Int. OOID Ext.
dx=2, dy=2

CvCNP (AR) 0.38±0.00 0.38±0.00 0.18±0.00

CvNP (ML) 0.31±0.01 0.31±0.01 −0.32±0.00

CvGNP 0.26±0.01 0.26±0.01 −0.33±0.00

CvCNP 0.12±0.01 0.12±0.01 −0.32±0.00

CvNP (ELBO) 0.04±0.00 0.04±0.00 −0.30±0.00

CvNP (E.–M.) −0.07±0.01 −0.07±0.01 −0.48±0.00

Trivial −0.32±0.00 −0.32±0.00 −0.32±0.00

ANP (ML) −0.32±0.00 −0.32±0.00 −0.32±0.00

CNP (AR) −0.32±0.00 −0.32±0.00 −0.32±0.00

CNP −0.32±0.00 −0.32±0.00 −0.32±0.00

NP (ML) −0.32±0.00 −0.32±0.00 −0.32±0.00

ACNP −0.32±0.00 −0.32±0.00 −0.32±0.00

ACNP (AR) −0.32±0.00 −0.32±0.00 −0.32±0.00

GNP −0.32±0.00 −0.32±0.00 −0.32±0.00

AGNP −0.32±0.00 −0.32±0.00 −0.32±0.00

NP (E.–M.) −0.33±0.00 −0.54±0.00 −0.34±0.00

NP (ELBO) −0.33±0.00 −0.54±0.00 −0.34±0.00

ANP (E.–M.) −0.36±0.00 −0.33±0.00 −0.33±0.00

ANP (ELBO) −0.36±0.00 −0.33±0.00 −0.33±0.00

FullCvGNP

105

Table 6.12: For the mixture synthetic experiments with one-dimensional inputs, average log-
likelihoods normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]
where the models where trained (“Int.”); interpolation within the range [2, 6] which the models have
never seen before (“OOID”); and extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”).
Models are ordered by interpolation performance. The latent variable models are trained and
evaluated with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and
trained with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). “Conv” is
abbreviated with “Cv”. Trivial refers to predicting the empirical means and standard deviation of
the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly
best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers
which are missing could not be run.

Mixture Int. OOID Ext.
dx=1, dy=1

CvCNP (AR) 0.53±0.04 0.53±0.04 0.31±0.04

FullCvGNP 0.30±0.04 0.30±0.04 −0.44±0.01

CvNP (ELBO) 0.28±0.03 0.28±0.03 −0.32±0.03

CvGNP 0.23±0.04 0.23±0.04 −1.32±0.03

CvNP (ML) 0.16±0.03 0.16±0.03 −0.85±0.02

CvCNP 0.10±0.06 0.12±0.04 −1.20±0.01

ACNP (AR) −0.07±0.02 −1.32±0.01 −1.32±0.01

ANP (ML) −0.25±0.02 −1.04±0.02 −1.04±0.02

AGNP −0.26±0.02 −0.95±0.02 −2.70±0.07

ANP (E.–M.) −0.36±0.02 −1.23±0.01 −1.11±0.02

ANP (ELBO) −0.39±0.02 −1.56±0.02 −2.18±0.03

CvNP (E.–M.) −0.45±0.11 −0.43±0.10 −3.39±0.06

ACNP −0.47±0.02 −1.31±0.01 −1.25±0.01

NP (E.–M.) −0.56±0.01 F −1.79±0.01

NP (ELBO) −0.60±0.01 F −1.99±0.01

NP (ML) −0.64±0.01 −1.64±0.01 −1.32±0.02

GNP −0.69±0.02 −2.38±0.06 −1.56±0.04

CNP (AR) −1.00±0.02 −1.18±0.02 −1.10±0.02

CNP −1.04±0.02 −1.16±0.02 −1.17±0.02

Trivial −1.32±0.00 −1.32±0.00 −1.32±0.00

Mixture Int. OOID Ext.
dx=1, dy=2

CvNP (ELBO) 0.15±0.03 0.15±0.03 −0.46±0.03

CvNP (ML) 0.02±0.03 0.02±0.03 −1.06±0.02

CvGNP 0.01±0.02 0.01±0.02 −2.45±0.06

CvCNP (AR) −0.10±0.01 −0.10±0.01 −0.28±0.02

FullCvGNP −0.13±0.01 −0.13±0.01 −0.59±0.01

ACNP (AR) −0.23±0.02 −1.46±0.02 −1.42±0.02

CvCNP −0.34±0.02 −0.34±0.02 −1.33±0.01

ANP (ML) −0.43±0.02 −1.21±0.02 −1.19±0.02

AGNP −0.51±0.01 −3.23±0.07 −3.00±0.06

ACNP −0.58±0.02 −1.43±0.02 −1.53±0.03

GNP −0.59±0.01 −1.68±0.03 −1.63±0.02

ANP (E.–M.) −0.66±0.02 −1.76±0.04 −1.74±0.04

ANP (ELBO) −0.69±0.02 −2.14±0.05 −2.06±0.05

NP (E.–M.) −0.77±0.01 F −1.65±0.02

NP (ELBO) −0.79±0.01 F −1.78±0.01

NP (ML) −0.80±0.01 −9.46±0.39 −1.41±0.02

CNP (AR) −1.15±0.02 −1.28±0.02 −1.22±0.02

CNP −1.16±0.02 −1.29±0.03 −1.29±0.02

CvNP (E.–M.) −1.29±0.07 −1.31±0.07 −5.28±0.07

Trivial −1.46±0.00 −1.46±0.00 −1.46±0.00

106

Table 6.13: For the mixture synthetic experiments with two-dimensional inputs, average log-
likelihoods normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]2
where the models where trained (“Int.”); interpolation within the range [2, 6]2 which the models have
never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”).
Models are ordered by interpolation performance. The latent variable models are trained and
evaluated with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and
trained with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). “Conv” is
abbreviated with “Cv”. Trivial refers to predicting the empirical means and standard deviation of
the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly
best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers
which are missing could not be run.

Mixture Int. OOID Ext.
dx=2, dy=1

CvCNP (AR) −0.10±0.03 −0.10±0.03 −0.34±0.03

CvCNP −0.49±0.03 −0.49±0.03 −1.45±0.02

CvGNP −0.50±0.02 −0.50±0.02 −1.24±0.02

CvNP (ML) −0.57±0.02 −0.57±0.02 −1.07±0.02

CvNP (ELBO) −0.63±0.02 −0.63±0.02 −1.08±0.02

ANP (ML) −0.73±0.02 −1.04±0.02 −1.05±0.02

CvNP (E.–M.) −0.76±0.02 −0.76±0.02 −1.37±0.02

ACNP (AR) −0.77±0.01 −1.28±0.01 −1.30±0.01

AGNP −0.78±0.01 −1.32±0.02 −1.32±0.02

ACNP −0.91±0.02 −1.29±0.01 −1.17±0.02

NP (ML) −0.91±0.02 −1.44±0.04 −1.19±0.02

NP (E.–M.) −0.92±0.02 −1.51±0.02 −1.38±0.02

NP (ELBO) −0.93±0.02 −1.74±0.03 −1.44±0.02

ANP (E.–M.) −1.00±0.02 −1.07±0.02 −1.08±0.02

ANP (ELBO) −1.03±0.02 −1.08±0.02 −1.09±0.02

CNP (AR) −1.06±0.02 −1.07±0.02 −1.08±0.02

GNP −1.06±0.02 −1.09±0.02 −1.08±0.02

CNP −1.07±0.02 −1.09±0.02 −1.10±0.02

Trivial −1.32±0.00 −1.32±0.00 −1.32±0.00

FullCvGNP

Mixture Int. OOID Ext.
dx=2, dy=2

CvCNP (AR) −0.62±0.01 −0.62±0.01 −0.79±0.01

CvGNP −0.74±0.01 −0.74±0.01 −1.43±0.02

CvNP (ML) −0.78±0.02 −0.79±0.02 −1.25±0.02

CvCNP −0.85±0.01 −0.85±0.01 −1.50±0.02

ACNP (AR) −0.85±0.01 −4.30±0.09 −4.24±0.09

ANP (ML) −0.88±0.01 −1.41±0.03 −1.21±0.02

CvNP (ELBO) −0.92±0.01 −0.92±0.01 −1.41±0.02

AGNP −0.93±0.01 −1.34±0.01 −1.21±0.02

ACNP −0.99±0.02 −4.19±0.10 −1.27±0.02

CvNP (E.–M.) −1.05±0.01 −1.05±0.01 −1.73±0.03

NP (ML) −1.07±0.01 −4.04±0.11 −1.31±0.02

ANP (E.–M.) −1.11±0.02 −2.65±0.62 −1.23±0.02

ANP (ELBO) −1.12±0.02 −8.22±7.64 −1.26±0.02

GNP −1.20±0.02 −1.39±0.03 −1.21±0.02

CNP (AR) −1.20±0.02 −2.61±0.07 −1.32±0.02

CNP −1.20±0.02 −2.60±0.08 −1.23±0.02

NP (E.–M.) −1.20±0.02 −3.23±0.10 −1.24±0.02

NP (ELBO) −1.20±0.02 −3.25±0.10 −1.24±0.02

Trivial −1.46±0.00 −1.46±0.00 −1.46±0.00

FullCvGNP

107

of πf , which is equal to the CNPA, is listed as “Diagonal GP” in Tables 6.2 and 6.4 to 6.9.

Table 6.2 summarises the results of the Gaussian experiments. For the task of interpolation,
the ConvCNP is, for all six summary statistics, 0.00–0.01 away from the CNPA. This means
that the ConvCNP is able to consistently recover the CNPA. In contrast, the ACNP comes
close, but is not quite able to converge onto the CNPA; and the CNP is not able to come
close at all. For OOID interpolation, the performance of the ACNP and CNP deteriorates.
The ConvCNP, on the other hand, performs equally well in the interpolation and OOID
interpolation tasks. This clearly demonstrates the benefits of translation equivariance,
which allows ConvCNP to generalise to unseen parts of the input space.

Amongst the Gaussian experiments, the weakly periodic process appears to be the more
challenging one. For the EQ and weakly periodic process, Figure 6.2 compares predictions
from the CNP, ACNP, and ConvCNP, showing that only the ConvCNP consistently recovers
the CNPA and only the ConvCNP successfully generalises beyond the training range.

Performance of GNPs in Gaussian experiments. Since the ground-truth stochastic
process f is Gaussian, the Gaussian neural process approximation (GNPA; Definition 3.25)
is equal to the posterior prediction map πf . Therefore, in the limit of infinite data, GNPs
should have the capacity the recover the posterior prediction map, the best possible out-
come. Table 6.2 shows that the FullConvGNP consistently recovers the posterior prediction
map πf for one-dimensional inputs. For two-dimensional inputs, the FullConvGNP is
computationally too expensive, unfortunately, so it cannot be run (Section 5.7). In terms
of interpolation performance, the ConvGNP performs second best, followed by the AGNP,
and the GNP comes last. Note, however, that no GNP is able to consistently recover the
posterior prediction map in all cases.

In Table 6.2, all GNPs perform better than the CNPA, which means that all GNPs successfully
exploit correlations to achieve performances unachievable by models that do not model
correlations. In comparison, the LNPs struggle to outperform the CNPA. Comparing GNPs
and LNPs in the more detailed results, Tables 6.4 to 6.9 show that GNPs consistently
perform better than their latent-variable counterparts, demonstrating the benefits of GNPs
when the ground truth really is Gaussian. In the most difficult Gaussian experiment, the
weakly periodic process with two-dimensional inputs and outputs, Table 6.9 shows that the
ConvGNP is the only GNP to consistently outperform the CNPA; and no other GNP and
no LNP is able to outperform the CNPA. In this most difficult case, however, even though
ConvGNP performs best amongst all GNPs and LNPs, the ConvGNP is not able to come
close to the posterior prediction map.

In terms of generalisation performance, Table 6.2 shows that the ConvGNP and FullCon-

108

vGNP perform equally well in the interpolation and OOID interpolation tasks, whereas the
performance of the GNP and AGNP deteriorate for OOID interpolation. This behaviour
is expected: the ConvGNP and FullConvGNP have a built-in mechanism to generalise to
unseen parts of the input space, but the GNP and AGNP do not.

However, in terms of generalisation performance, there is one important anomaly: the Con-
vGNP performs well on OOID interpolation, but the model’s performance for extrapolation
is consistently poor. This shows in Table 6.2 as well as in the more detailed results, Tables 6.4
to 6.9. What is going wrong is that the ConvGNP implements the eigenmap (Definition 5.8)
with the convolutional deep set from Theorem 4.8, and the output of this convolutional
deep set becomes constant when it is far away from the context inputs. This problem is
exactly what the FullConvGNP’s additional source channel solves, so this problem is not
present for the FullConvGNP. We might hope to fix this flaw of the ConvGNP by also
incorporating a source channel, but it is not clear what a source channel would look like for
the ConvGNP. On a deeper level, this flaw of the ConvGNP is a consequence of that a DTE
kernel map might not have a TE eigenmap. See Section 5.5 for a more detailed discussion
of problems with the representational capacity of the ConvGNP. We again emphasise that
these issues—theoretical in Section 5.5, but now practical here—underline the importance
of entirely basing neural process architectures on representation theorems.

For the EQ data process and weakly-periodic data process, Figure 6.3 compares predictions
of LNPs and GNPs.

Performance of AR CNPs in Gaussian experiments. Having analysed the performance
of CNPs and GNPs, we add AR CNPs to the mix. In terms of interpolation performance,
Table 6.2 shows that the AR CNP performs better than the CNP; that the AR ACNP performs
better than the ACNP; and that the AR ConvCNP performs better than the ConvCNP.
In fact, whereas the ACNP and ConvCNP perform no better and cannot perform better
than the CNPA, the AR ACNP and AR ConvCNP significantly outperform the CNPA.
This demonstrates that rolling out a CNP autoregressively can improve performance by
successfully modelling dependencies between target outputs.

For Gaussian data, an important question is which of the classes CNPs, GNPs, LNPs, and
AR CNPs should preferably be used. For the deep-set-based and attentive families, Table 6.2
shows that the GNPs perform best overall. For the convolutional family, however, the AR
ConvCNP performs best. Amongst all neural processmodels, for one-dimensional inputs, the
FullConvGNP performs best, with the AR ConvCNP a close second; and for two-dimensional
inputs, the AR ConvCNP performs best. For two-dimensional inputs, the AR ConvCNP is the
only model able to recover the posterior prediction map, an impressive achievement.

109

−2

0

2

C
N

P

−2

0

2

A
C

N
P

−2

0

2

C
on

vC
N

P

−2 −1 0 1 2

−2

0

2

G
ro

un
d

tr
ut

h

−2 −1 0 1 2

(a) Predictions and observations inside the training range

−2

0

2

C
N

P

−2

0

2

A
C

N
P

−2

0

2

C
on

vC
N

P

1 2 3 4 5

−2

0

2

G
ro

un
d

tr
ut

h

1 2 3 4 5

(b) Predictions and observations partly inside and partly outside the training range

Figure 6.2: Predictions by CNPs in the Gaussian synthetic experiments. Left column: data sampled
from the EQ data process. Right column: data sampled from the weakly-periodic data process. The
training range is shaded grey. Shows predictions by the models in dashed blue and predictions by
the ground truth in dot-dashed purple. Filled regions are central 95%-credible regions.

110

−2

0

2

N
P

(E
L

B
O

)

−2

0

2

G
N

P

−2

0

2

A
N

P
(M

L
)

−2

0

2

A
G

N
P

−2

0

2

C
on

vN
P

(M
L

)

−2

0

2

C
on

vG
N

P

−2

0

2

F
ul

lC
on

vG
N

P

−2 −1 0 1 2

−2

0

2

G
ro

un
d

tr
ut

h

1 2 3 4 5

Figure 6.3: Predictions by LNPs and GNPs in the Gaussian synthetic experiments. Left column:
data sampled from the EQ data process. Right column: data sampled from the weakly-periodic data
process. The training range is shaded grey. Shows predictions by the models in dashed blue and
predictions by the ground truth in dot-dashed purple. Filled regions are central 95%-credible regions.

111

−1

0

1

C
on

vN
P

(M
L

)

−1

0

−1

0

1

C
on

vC
N

P
(A

R
)

−1

0

−1

0

1

F
ul

lC
on

vG
N

P

−1

0

−1

0

1

C
on

vG
N

P

−1

0

−1

0

1

A
C

N
P

(A
R

)

−1

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1

0

1

A
N

P
(E

L
B

O
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

Figure 6.4: Predictions by the best-performing models in the sawtooth synthetic experiment with
one-dimensional inputs and two-dimensional outputs (Table 6.10). For both outputs, the models
observe 20 data points randomly sampled from [−2, 2]; the plots only show the observations on
[0, 2]. Left column: first output of the sawtooth process. Right column: second output of the sawtooth
process. The training range is shaded grey. Filled regions are central 95%-credible regions.

112

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Prediction at x = 0

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Figure 6.5: Multi-modality of predictions by the AR ConvCNP. Shows four observations sampled
from the sawtooth process. In the four rows, these four observations are revealed one data point at
a time. Every row also shows a kernel density estimate of the prediction at x = 0. Note that the
prediction is bimodal for one and two observations, and collapses to a single mode upon observing
the third observation. Filled regions are central 95%-credible regions.

113

In these synthetic experiments, the number of target points is at most 200. It might be
that this number is low enough for the inconsistency of AR CNPs (Section 5.6) to not be
a problem. It is possible that, if this number is increased, the performance of AR CNPs
deteriorates, whereas the performance of CNPs, GNPs, and LNPs should remain the same.
We do not perform evaluation with more than 200 target points, because, at 200 target points,
a single evaluation of an AR CNP already takes around two hours in the worst case.

Performance in non-Gaussian experiments. Whereas the FullConvGNP dominated the
leaderboard in the Gaussian experiments, in the non-Gaussian experiments, the models’ rel-
ative performances are different. Table 6.3 summarises the non-Gaussian experiments. Note
that Table 6.3 shows log-likelihoods rather than Kullback–Leibler divergences: the posterior
prediction map is intractable for non-Gaussian ground-truth stochastic processes.

To begin with, for one-dimensional inputs, the top position is now shared by the AR
ConvCNP and ConvNP. Notably, the AR ConvCNP and ConvNP are both non-Gaussian
models. Previously, in the Gaussian experiments, the best performing GNPs, ConvGNP
and FullConvGNP, outperformed all LNPs. Now, in the non-Gaussian experiments, the
best performing LNP, the ConvNP, outperforms all GNPs. This shows that the Gaussianity
assumption of GNPs helps when the ground truth really is Gaussian, but hurts when the
data is non-Gaussian. For two-dimensional inputs, the AR ConvCNP strongly outperforms
all other models.

For the sawtooth data with one-dimensional inputs and outputs, Table 6.10 shows that
the non-convolutional CNPs and GNPs completely failed to capture any structure of the
data. Only the non-convolutional neural processes using a latent variable were able to
achieve non-trivial performance. Remarkably, when the output dimension is then increased
to two, all models except the CNP achieve non-trivial performance. This could be due to an
increase in number of target points, or perhaps due to increased model capacity; namely,
the architectures of non-convolutional CNPs and GNPs are slightly different for one and
two-dimensional outputs (Appendix E.1). For the sawtooth data with two-dimensional
inputs, Table 6.11 shows that only the convolutional neural processes achieves non-trivial
performance. All non-convolutional neural processes were unsuccessful in fitting any
non-trivial aspect of the data.

Compared to the Gaussian experiments, the results of the non-Gaussian experiments are
generally more variable. For example, whereas the AR ConvCNP is amongst the best in
most non-Gaussian experiments, Table 6.12 shows that it ranks fourth in on the mixture
data with one-dimensional inputs and two-dimensional outputs, ranking even behind the
ConvGNP. This variability could be due to imperfect training, due to the fact that we
are comparing log-likelihoods rather than Kullback–Leibler divergences, or even due to

114

increased variability between the non-Gaussian data processes.

Finally, we remark that the AR ConvCNP exhibits unparalleled extrapolation performance.
For example, for two-dimensional inputs, Table 6.3 the AR ConvCNP achieves log-likelihood
0.29 on average, whereas the second best, the ConvNP, achieves −0.62 on average, a differ-
ence of 0.91! We hypothesise that this exceptional performance is due to the AR ConvCNP’s
ability to “renew” the receptive field, which we explain now. The non-autoregressive convo-
lutional models are all limited by the receptive field of the CNN architecture (Definition 5.6):
due to the finite size of the convolutional filters, signals deriving from the context set carry
only limitedly far (Section 5.4). This limits the model’s ability to extrapolate. When the Con-
vCNP is sampled, however, and this sample is fed back into the architecture (Procedure 5.14),
this produces a new signal starting at the input of that sample. Hence, at every autoregress-
ive sampling step, the AR ConvCNP effectively “renews” the receptive field.

Figure 6.4 compares predictions by the best-performing models in the sawtooth synthetic
experimentwith one-dimensional inputs (dx = 1) and two-dimensional outputs (dy = 2); see
Table 6.10. Moreover, Figure 6.5 illustrates the that, although the predictions of the ConvCNP
are Gaussian, the AR ConvCNP can produce appropriate multi-modal predictions.

6.3 Sim-to-Real Transfer with the Lotka–Volterra
Equations

In this second experiment, we investigate the ability of neural processes to perform sim-to-
real transfer. The goal of sim-to-real transfer is to use a data simulator tomake predictions for
real data. There are no requirements on the data simulator: it can be arbitrarily complicated
and involve niche expert knowledge. Because of the complexity of the data simulator, it
usually is not possible to directly use the simulator to make predictions. The strategy of
sim-to-real transfer is to train a model on data generated with the data simulator. After the
model is trained on this synthetic source of data, the model is applied to real data. In this
way, the model facilitates a mechanism in which complex data simulators can be used to
make predictions.

Our goal will be to make predictions for the famous hare–lynx data set. The hare–lynx data
set is a time series from 1845 to 1935 recording yearly population counts of a population of
Snowshoe hares and a population of Canadian lynx (MacLulich, 1937). A digital version ex-
tracted from the original graph by MacLulich (1937) is available at http://people.whitman.
edu/~hundledr/courses/M250F03/LynxHare.txt (Hundley, 2022). Hundley (2022), the au-
thor of this digital source, says that other authors caution that the hare–lynx data is actually

115

http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt
http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940
Year

0

50

100

150

P
op

ul
at

io
n

(×
1k

)

Hares
Lynx

(a) Illustration of the hare–lynx data set

0

50

100

0

25

50

75
Hares
Lynx

0 20 40 60 80 100

0

20

40

0 20 40 60 80 100

0

25

50

75

(b) Four samples from the proposed stochastic version of the Lotka–Volterra equations (6.8) and (6.9). The
parameters of (6.8) and (6.9) are sampled according to Table 6.14.

Figure 6.6: Hare–lynx data set and proposed stochastic simulator

a composition of multiple time series, and presents the data with that caution. We, therefore,
also present the data with this caution. Figure 6.6a visualises the hare–lynx data set.

To make predictions for the hare–lynx data set, we will use the Lotka–Volterra equations
(Lotka, 1910; Volterra, 1926), also called the predator–prey equations. The Lotka–Volterra
equations are an idealisedmathematical model for the population counts of a prey population
and a predator population:

prey population: x′(t) = αx(t)− βx(t)y(t), (6.6)

predator population: y′(t) = −δy(t) + γx(t)y(t). (6.7)

These differential equations say that the prey population naturally grows exponentially
with rate α, and that the predator population naturally decays exponentially with rate δ.
In addition, the predators hunt the prey. The resulting additional growth in the predator
population and the resulting additional decrease in the prey population are both proportional
to the product of the densities. In this idealised mathematical form, the population counts

116

Table 6.14: Sampling distributions for the parameters of the stochastic version of the Lotka–Volterra
equations (6.8) and (6.9). These equations are simulated on a dense grid spanning [−10, 100]. The
table also shows the distribution for the initial conditions at t = −10. To not depend too heavily on
these initial conditions, the simulation results on [−10, 0] are discarded.

Parameter Distribution

Initial condition X−10 Unif([5, 100])
Initial condition Y−10 Unif([5, 100])
α Unif([0.2, 0.8])
β Unif([0.04, 0.08])
γ Unif([0.8, 1.2])
δ Unif([0.04, 0.08])
ν Fixed to 1/6
σ Unif([0.5, 10])

converge to a smooth, noiseless limit cycle and then perfectly track this limit cycle ever after.
This is unlike real-world predator–prey population counts, which exhibit noisy behaviour
and imperfect cycles. We therefore consider a stochastic version of the Lotka–Volterra
equations, given by the following two coupled stochastic differential equations:

dXt = αXt dt− βYtXt dt+ σXν
t dW

(1)
t , (6.8)

dYt = −γXt dt+ δYtXt dt+ σY ν
t dW

(2)
t (6.9)

whereW (1) andW (2) are two independent Brownian motions. Compared to the Lotka–
Volterra equations, (6.8) and (6.9) have two additional terms, σXν

t dW
(1)
t and σY ν

t dW
(2)
t ,

which introduce noisy behaviour. In these terms, multiplying byXν
t and Y ν

t makes the noise
go to zerowhenXt andYt become small, ensuring thatXt andYt remain positive. In addition,
we multiply by a parameter σ > 0 to control the magnitude of the noise, and we raise Xt

and Yt to a power ν > 0 to control how quickly the noise grows asXt and Yt grow. Namely,
Xt naturally grows exponentially, so, by adding noise of magnitude proportional to Xt, we
risk large spikes in the prey population. To moderate this behaviour, we choose ν to be
strictly less than one. In particular, after simulating from (6.8) and (6.9) a few times, we settle
on ν = 1

6
. For the remainder of the parameters, we simply manually play around with (6.8)

and (6.9), settle on parameter ranges that look reasonable, and randomly sample parameters
from those intervals. Table 6.14 summarises the sampling distributions for all parameters of
(6.8) and (6.9). Figure 6.6b shows four samples from the proposed stochastic model.

We have constructed a simulator that can generate data which looks roughly like the hare–
lynx data. Following the sim-to-real paradigm, we will generate a meta–data set with this
simulator, train a neural process on the meta–data set, and finally apply the neural process
to the real hare–lynx data.

117

To generate a meta–data set, we simulate (6.8) and (6.9) on a dense grid spanning 110 years,
throw away the first 10 years, and retain between 150 and 250 data points forXt and Yt. The
numbers of data points and the locations of the data points are sampled separately forXt and
Yt. Hence, whereas the hare–lynx data is regularly spaced and the populations are always
simultaneously observed, our simulator generates data at arbitrary and nonsimultaneous
points in time. We split these data sets into context and target sets in three different ways.
First, for Xt and Yt separately, randomly designate 100 points to be the target points and
let the remainder be the context points. This task is called interpolation and is the primary
measure of performance. Second, select a random time between 25 years and 75 years, let
everything before that time be the context set, and let everything after that time be the
target set. This task is called forecasting and measures the model’s ability extrapolate the
cyclic behaviour. Third, randomly choose Xt or Yt and, for the choice, split the data in
two exactly like for forecasting. For Xt or Yt that was not chosen, append all data to the
context set. This task is called reconstruction and measures the model’s ability to infer one
population count from the other. To train the models, for every batch, we randomly choose
one of these tasks by rolling a three-sided die. We will also perform these tasks on the real
hare–lynx data; in that case, for interpolation, we let the number of target points per output
be between one and fifteen. The tasks on simulated and real data are similar, but slightly
differ in the number of context and target points.

We compare the strongest newly proposed models against the strongest existing baselines.
Based on Section 6.2, we choose to compare the ConvCNP, ConvGNP, FullConvGNP, and
AR ConvCNP against the ACNP, ANP, ConvNP, and AR ACNP. To deal with the positivity
of population counts, we transform the marginals of all models to distributions on (0,∞)

by pushing the marginals through x 7→ log(1 + x). Appendix E.1 describes the general ar-
chitectures of the models, Appendix E.2 describes the general training, cross-validation, and
evaluation protocols, and Appendix E.4 describes details specific to this experiment.

Results. For simulated data, Table 6.15 shows the results for interpolation, forecasting, and
reconstruction, and the left column of Figure 6.7 illustrates predictions by the models. The
FullConvGNP and AR ConvCNP take a shared top position in the results. For interpolation,
the ConvNP, ConvGNP, and ConvCNP come a close second; and for reconstruction, the AR
ConvCNP outperforms the FullConvGNP. Note that, for interpolation, the ConvGNP fails
to outperform the ConvCNP, which indicates that ConvGNP was unable to successfully
exploit dependencies between target outputs in this task. Also note that the AR ConvCNP
outperforms the ConvCNP, ConvGNP, and the ConvNP; and that the AR ACNP outperforms
the ACNP and the ANP. This again demonstrates that running CNPs in ARmode can improve
performance and can even outperform strong GNPs and LNPs.

118

Table 6.15: Normalised log-likelihoods in the predator–prey experiments. Shows the performance
for interpolation (“Int.”), forecasting (“For.”), and reconstruction (“Rec.”) on simulated (“S”) and real
(“R”) data. Models are ordered by interpolation performance on simulated data. See Section 6.3
for a more detailed description. The latent variable models are trained and evaluated with the
ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and trained with the
ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers
which are very large are marked as failed with “F”. Numbers which are missing could not be run.

Model Int. (S) For. (S) Rec. (S) Int. (R) For. (R) Rec. (R)

FullConvGNP −2.23±0.02 −2.39±0.02 −2.68±0.02 −4.56±0.09 −5.61±0.24 −4.35±0.03

ConvCNP (AR) −2.23±0.02 −2.38±0.02 −2.50±0.02 −4.69±0.11 −4.80±0.11 −4.47±0.06

ConvNP (ML) −2.35±0.02 −2.76±0.02 −3.32±0.01 −4.73±0.10 −5.18±0.15 −4.47±0.01

ConvGNP −2.39±0.02 −2.57±0.02 −3.03±0.02 −5.26±0.17 −7.63±0.51 −4.63±0.04

ConvCNP −2.39±0.02 −2.94±0.02 −3.70±0.01 −4.84±0.13 −6.04±0.27 −4.70±0.02

ConvNP (ELBO) −2.71±0.02 −2.78±0.02 −3.06±0.01 −8.54±0.30 F −9.97±0.18

ACNP (AR) −2.83±0.01 −2.98±0.02 −3.25±0.02 −4.60±0.09 −4.69±0.06 −4.76±0.05

ANP (ELBO–ML) −2.86±0.02 −3.16±0.02 −3.63±0.01 −5.28±0.17 −5.70±0.20 −4.75±0.02

ANP (ELBO) −2.95±0.03 −3.21±0.02 −3.66±0.01 −5.84±0.24 −5.77±0.16 −4.83±0.03

ACNP −2.95±0.02 −3.27±0.02 −3.73±0.01 −4.65±0.10 −5.90±0.19 −4.73±0.02

ANP (ML) −2.97±0.01 −3.11±0.02 −3.44±0.01 −4.54±0.04 −4.41±0.04 −4.69±0.02

ConvNP (E.–M.) −5.87±0.05 −7.82±0.13 F F F F

After having the trained and evaluated the models on data generated with our stochastic
version of the Lotka–Volterra equations, we finally apply the models to the real hare–lynx
data set. Table 6.15 again shows the results for all three tasks, and the right column of
Figure 6.7 illustrates predictions by the models. Whereas the FullConvGNP shared the top
position with the AR ConvCNP for the simulated data, the FullConvGNP now shares the
top position with the AR ACNP and ANP. For the simulated data in Figure 6.7, predictions
appear appropriately calibrated. For the real hare–lynx data in Figure 6.7, however, the
predicted uncertainties look much less well calibrated, and sometimes even fail to capture
the data. We conclude that the neural processes trained on our simulator can be used to
produce acceptable predictions. However, these predictions are not perfectly calibrated, so
we also conclude that there is a statistical mismatch between the simulator and the real hare–
lynx data. That there is a statistical mismatch is corroborated by the observation that the
log-likelihoods for the real data are generally much lower than for the simulated data.

To alleviate accidental overconfidence due to mismatch between the simulator and the real
data, it works in a model’s favour to generally produce predictions with bigger uncertainty.
Figure 6.7 shows that the convolutional models tightly fit the simulated data, whereas the
AR ACNP and ANP generally produce bigger uncertainties. Consequently, the convolutional
model comparably perform worse on the real data, and the AR ACNP and ANP comparably

119

0

50

F
ul

lC
on

vG
N

P
Simulated (Hares)

0

100

Real (Hares)

Observed
Held out

0

50

C
on

vC
N

P
(A

R
)

0

100

0

50

C
on

vN
P

(M
L

)

0

100

0

50

C
on

vG
N

P

0

100

0

50

A
C

N
P

(A
R

)

0

100

40 50 60 70 80 90 100 110
Years since start

0

50

A
N

P
(M

L
)

40 50 60 70 80 90 100 110
Years since start

0

100

Figure 6.7: Predictions by the best performing models in the predator–prey experiment. Shows
predictions for data generated from the simulator (left) and predictions for the real hare–lynx data
(right). The models observe all lynx population counts and some hare population counts. The plots
show predictions for some observed and some unobserved hare population counts. Filled regions
are central 95%-credible regions.

perform better.

6.4 Electroencephalography Experiments

In the third experiment, we explore an electroencephalography data set collected from 122
subjects (Begleiter, 2022). There are two groups of subjects: alcoholic and control. Every sub-
ject was subjected to a single stimulus or two stimuli, and their response was measured with
64 electrodes placed on a subject’s scalp. These measurements are in terms of trials, where
a trial consists of 256 samples of the electrodes spanning one second. The data sets contains
up to 120 trials for each subject. The data is available at https://archive.ics.uci.edu/ml/
datasets/eeg+database and the collection is described in detail by Zhang et al. (1995). In
this experiment, we focus only on seven frontal electrodes: FZ, F1, F2, F3, F4, F5, and F6. Fig-
ure 6.8 illustrates a trial of a subject, showing the samples for these seven electrodes.

120

https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database

−10
0

10
F

Z

−10
0

10

F
1

−10
0

F
2

−10
0

10

F
3

−20

0

F
4

0

20

F
5

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

−20

0

F
6

Figure 6.8: Example of trial in the EEG data set. Note that the signals for all electrodes appear
correlated, but are subtly different.

We randomly split all subjects into three sets: an evaluation set consisting of ten subjects,
a cross-validation set consisting of ten other subjects, and a training set consisting of all
remaining subjects. For each of these sets, we create a meta–data set by aggregating the
trials for all subjects. We split every trial into a context and target set in the same three ways
as for the predator–prey experiment (Section 6.3). First, for all seven electrodes separately,
randomly designate between 50 and 100 points to be the target points and let the remainder
be the context points. This task is called interpolation and is the primary measure of per-
formance. Second, select a random time between 0.5 s and 0.75 s, let everything before that
time be the context set, and let everything after that time be the target set. This task is called
forecasting and measures the model’s ability extrapolate. Third, randomly choose one of the
seven electrodes and, for that choice, split the data in two exactly like for forecasting. For all
other electrodes, append all data to the context set. This task is called reconstruction andmeas-
ures themodel’s ability to infer a signal for one electrode from the others. To train themodels,
for every batch, we randomly choose one of the tasks by flipping a three-sided coin.

Like for the predator–prey experiment (Section 6.3), we compare the ConvCNP, ConvGNP,
FullConvGNP, and AR ConvCNP against the ACNP, ANP, ConvNP, and AR ACNP. Ap-
pendix E.1 describes the general architectures of the models, Appendix E.2 describes the
general training, cross-validation, and evaluation protocols, and Appendix E.5 describes
details specific to this experiment. We remark that architecture of the ANP required modi-

121

Table 6.16: Normalised log-likelihoods in the EEG experiments. Shows the performance for inter-
polation, forecasting, and reconstruction. Models are ordered by interpolation performance. See
Section 6.4 for a more detailed description. The latent variable models are trained and evaluated
with the ELBO objective (ELBO); trained and evaluated with the ML objective (ML); and trained
with the ELBO objective and evaluated with the ML objective (ELBO–ML; E.–M.). Errors indicate
the central 95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced.
Numbers which are very large are marked as failed with “F”. Numbers which are missing could not
be run.

Model Interpolation Forecasting Reconstruction

FullConvGNP −0.39±0.01 −0.52±0.01 −0.67±0.00

ConvCNP (AR) −0.74±0.01 −1.32±0.02 −1.52±0.01

ConvGNP −0.83±0.01 −0.57±0.01 −1.84±0.01

ConvCNP −1.10±0.01 −2.08±0.04 −3.42±0.02

ConvNP (ML) −1.23±0.01 −1.59±0.02 −3.01±0.01

ConvNP (ELBO) −1.58±0.01 −2.54±0.04 −2.44±0.01

ANP (ML) −1.71±0.01 −1.72±0.02 −3.00±0.01

ACNP (AR) −1.79±0.01 −2.04±0.02 −2.18±0.01

ANP (ELBO–ML) −1.82±0.01 −2.31±0.03 −3.06±0.01

ANP (ELBO) −1.84±0.01 −2.41±0.03 −3.06±0.01

ACNP −1.96±0.01 −2.33±0.04 −3.42±0.02

ConvNP (E.–M.) −3.06±0.04 −7.11±0.70 F

fications in order to scale the model, and that the training of the FullConvGNP and ANP
were cut short after having run for 45 hours; see Appendix E.5 for more details.

Results. Table 6.16 presents the results for interpolation, forecasting, and reconstruction,
and Figure 6.9 illustrates predictions by the models. On all three tasks, the FullConvGNP
outperforms all other models. For interpolation, the AR ConvCNP comes second; and, for
forecasting, the ConvGNP is a close second. For reconstruction, however, no other model
comes close. Note that the AR ConvCNP outperforms the ConvGNP in the interpolation
and reconstruction tasks, but the ConvGNP performs substantially better in the forecasting
task. This is a rather strong performance by the ConvGNP. Except for the ConvGNP, for
strictly all models, the forecasting and reconstruction log-likelihoods are worse than the
interpolation log-likelihood. For the ConvGNP, the forecasting log-likelihood is best and
considerably improves over the interpolation log-likelihood. This strong performance of
the ConvGNP is confirmed by Figure 6.9, where the prediction of the ConvGNP in the
forecasting task is indeed similar to that of the FullConvGNP.

122

−20

0

F
ul

lC
on

vG
N

P
Reconstruction (F6)

−25

0

25

Forecasting (F6)

−20

0

20

C
on

vC
N

P
(A

R
)

−20

0

20

−20

0

C
on

vG
N

P

−25

0

25

−20

0

C
on

vN
P

(M
L

)

0

50

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Time (s)

−20

0

20

A
N

P
(M

L
)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Time (s)

0

25

Figure 6.9: Predictions by the best performing models in the EEG experiment. The data in this
example experiment is the sample trial from Figure 6.8. In both tasks, the models predict the last 100
samples of electrode F6. In the reconstruction task, the models observe for electrodes FZ and F1–F5
the entire signal and for electrode F6 only the first 156 samples. In the forecasting task, the models
observe for all electrodes only the first 156 samples. Filled regions are central 95%-credible regions.

6.5 Climate Downscaling

In the last experiment, we explore a climate science application. In climate modelling, future
projections are generated by integrating the atmospheric equations of motion forward in
time using a numerical solver. Unfortunately, computational constraints typically limit
the spatial resolution of those projections to around 100 km (Eyring et al., 2016), which is
insufficient to resolve extreme events and produce local predictions (Stocker et al., 2013;
Maraun et al., 2017). Statistical downscaling methods attempt to address this issue by
refining the coarse-grained outputs into more fine-grained predictions (Maraun et al., 2018).
While numerous data-driven approaches exist, statistical downscaling methods are often
limited to making predictions at a fixed set of points at which historical observations are
available (Vandal et al., 2017; Bhardwaj et al., 2018; Misra et al., 2018; Sachindra et al., 2018;

123

Vandal et al., 2018; Vandal et al., 2019; Pan et al., 2019; A. Singh et al., 2019; Baño-Medina
et al., 2020; Y. Liu et al., 2020).

Recently, Vaughan et al. (2022) used the ConvCNP to perform statistical downscaling.
Compared to existing downscaling methods, a notable feature of the ConvCNP is that the
model is not limited to a fixed set of points, but can make fine-grained predictions anywhere.
However, as we discussed in Section 5.5, the ConvCNP does notmodel dependencies between
target outputs, and is consequently unable to produce coherent samples. This limits the
applicability of Vaughan et al.’s approach, because the ability to model dependencies is
important for downstream applications. For example, to estimate the maximum temperature
of a region, as opposed to single point location, it is necessary to model spatial dependencies.
In this experiment, we extend Vaughan et al.’s approach to the ConvGNP and AR ConvCNP.
Importantly, the ConvGNP and AR ConvCNP model spatial dependencies, so we broaden
the downstream applicability of Vaughan et al.’s approach.

Thus far, context sets and target sets have consisted of data from the same domain. Specific-
ally, in Section 3.1, we proposed a motivating generative model where the context and target
set both consist of noisy observations of the same ground-truth stochastic process f . How-
ever, nowhere in our developments have we actually used or required that the outputs of the
context and target sets live in the same space! In fact, all models that we have considered so
far also work when the outputs of the context sets are vectors of a different dimensionality
than the outputs of the target set. In the CNP (Model 5.1) and GNP (Model 5.9), this simply
means that the MLP ϕθ of the encoder takes in more of fewer y-dimensions; and in the
ConvCNP (Model 5.4), ConvGNP (Model 5.12), and FullConvGNP (Model 5.13), this simply
means that the CNN takes in more or fewer data channels—no other modifications are
necessary. This generalisation might not have been immediately apparent earlier, because
we only considered one-dimensional outputs for notational simplicity. Letting the outputs of
the context and target sets be from different domains says, very simply, to make predictions
for some data based on other data.2 In a way, this formulation is even simpler than what
we have considered so far. Vaughan et al.’s (2022) approach is based on this interpretation
of neural processes. Before we explain the setup of the ConvCNP and the extension to the
ConvGNP and AR ConvCNP, we first detail the experimental setup.

In this experiment, we will consider two statistical downscaling tasks: the VALUE task and
the Germany task. The VALUE task follows the VALUE framework (Maraun et al., 2015),
which provides results for a large ensemble of frequently used downscaling methods on a

2 For translation equivariance (Definition 2.4) to make sense, we do require that the inputs of the context
and target set live in the same space. However, should we not be concerned with translation equivariance,
then the inputs need not live in the same space either.

124

(a) VALUE: 86 weather stations (b) Germany: 589 weather stations

Figure 6.10: Locations of the weather stations in the VALUE and Germany downscaling and fusion
experiments

standardised set of tasks. More specifically, for the VALUE task, we consider experiment 1a
from the VALUE framework and estimate the maximum daily temperature at 86 weather
stations around Europe. To estimate these temperatures, we follow Vaughan et al. (2022)
and use 25 coarse-grained ERA-Interim reanalysis variables (Dee et al., 2011) in combination
with 1 km–resolution elevation data (Earth Resources Observation and Science Center, U.S.
Geological Survey, U.S. Department of the Interior, 1997). We consider the following 25
ERA-Interim reanalysis variables:

• at the surface: maximum temperature, mean temperature, northward wind, and
eastward wind;

• in the upper atmosphere at 850 hPa, 700 hPa, and 500 hPa: specific humidity, tem-
perature, northward wind, and eastward wind; and

• invariant features: angle of sub-grid-scale orography, anisotropy of sub-grid-scale
orography, standard deviation of filtered sub-grid-scale orography, standard deviation
of orography, geopotential, longitude, latitude, and fractional position in the year t
transformed encoded with t 7→ (cos(2πt), sin(2πt)).

These variables are bilinearly interpolated to a 2◦-resolution grid. The temperature data
is provided by the VALUE framework at http://www.value-cost.eu/data and the ERA-
Interim reanalysis data is available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-interim. The 1 km–resolution elevation data is available at
https://doi.org/10.5066/F7DF6PQS. The locations of the weather stations around Europe
are visualised in Figure 6.10a.

For the Germany task, we estimate the maximum daily temperature at 589 weather stations
around Germany using the same 25 coarse-grained ERA-Interim reanalysis variables and

125

http://www.value-cost.eu/data
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://doi.org/10.5066/F7DF6PQS

the same 1 km–resolution elevation data. In this case, however, the ERA-Interim reanalysis
variables are used at their native 0.75◦-resolution grid. The weather station data are a
subselection of the European Climate Assessment & Dataset (Tank et al., 2002) and are
available at https://www.ecad.eu; we use the blended data. The locations of the weather
stations around Germany are visualised in Figure 6.10b.

Part 1: downscaling with the MLP ConvCNP and MLP ConvGNP. This experiment
consists of two parts. In this first part, we perform the VALUE and Germany downscaling
tasks by setting up the context and target sets as follows. For every day, let the context
set be the 25 coarse-grained ERA-Interim reanalysis variables and let the target set be the
observations of the weather stations—we will shortly explain how the 1 km–resolution
elevation data is incorporated. As we previously explained, there is no problem in letting
the context and target data be from different domains. For the ConvCNP and ConvGNP, we
set the internal discretisation (Procedure 5.5) equal to the 2◦ or 0.75◦-resolution grid of the
ERA-Interim reanalysis variables. Moreover, following Vaughan et al. (2022), rather than
using a U-Net architecture, we use a residual convolutional neural network (He et al., 2016)
with depthwise-separable convolutions (Chollet, 2017). To incorporate the 1 km–resolution
elevation data, one approach would be to also include this data in the context set. However,
we would then have to increase the resolution of the discretisation from 2◦ or 0.75◦ to 1 km;
otherwise, much of the detail in the elevation data would be lost. Unfortunately, making
the discretisation this much finer would come with a substantial increase in computational
cost. Instead, Vaughan et al. propose a different approach. After the CNN architecture,
insert a pointwise multilayer perceptron (MLP) which, at every target input, fuses the local
elevation with the output of the CNN architecture:

Definition 6.1 (Pointwise MLP; Vaughan et al., 2022). Consider a neural process with

a decoder decθ operating on a functional encoding (Definition 4.6): decθ : C(X ,RK1) →
C(X ,RK2). Let aux : X → RK3 be auxiliary information. We say that the neural process

incorporates the auxiliary information with a pointwise MLP if the decoder is of the form

decθ = fuseθ ◦ dec′θ where dec′θ : C(X ,RK1)→ C(X ,RK̃2) and

fuseθ : C(X ,RK̃2)→ C(X ,RK2), fuseθ(z(•)) = MLPθ(z(•), aux(•)) (6.10)

with MLPθ : RK̃2+K3 → RK2 a multi-layer perceptron called the pointwise MLP.

We let the ConvCNP and ConvGNP incorporate the 1 km–resolution elevation data using a
pointwise MLP in the sense of Definition 6.1; specifically, aux produces the elevation at any
input using bilinear interpolation. We call these variations of the ConvCNP and ConvGNP
the MLP ConvCNP and MLP ConvGNP respectively.

126

https://www.ecad.eu

Table 6.17: Normalised log-likelihoods and mean absolute errors (MAEs) in the climate downscaling
experiments. Shows the performance on the VALUE and Germany downscaling tasks averaged
over the five folds from the VALUE protocol (Maraun et al., 2015). The MAE is the mean of the
MAE per station. The MAE of the VALUE models are computed from results published at http:
//www.value-cost.eu/validationportal. VALUE models refer to the models used the comparison
of 52 downscaling approaches (http://www.value-cost.eu; Maraun et al., 2015; Gutiérrez et
al., 2019). “PP” stands for perfect prognosis and refers to the class of VALUE models which are
comparable to the models in this chapter (Maraun et al., 2010). Errors indicate the central 95%-
confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced.

Model VALUE Germany
Log-lik. MAE Log-lik. MAE

ConvCNP (MLP) −1.66±0.00 1.04±0.04 −1.62±0.01 1.00±0.05

ConvGNP (MLP) −1.63±0.00 1.01±0.04 −1.45±0.00 1.14±0.06

Best VALUE PP model 1.37±0.05

Best VALUE model 1.20±0.08

We perform the VALUE and Germany downscaling tasks for all days of the years 1979–2008.
Following the VALUE framework (Maraun et al., 2015), we split these years into five folds. On
each of the five folds, we evaluate the neural process, using the four other folds for training
and holding out the last 1000 days of the training folds for cross-validation. Appendix E.2
describes the general training, cross-validation, and evaluation protocols, and Appendix E.6
describes the architectures and further details specific to this experiment.

Results. The VALUE framework includes results for 52 downscaling approaches (http:
//www.value-cost.eu/; Maraun et al., 2015; Gutiérrez et al., 2019). Amongst these 52
approaches, the category that is comparable to our neural process approach is called perfect

prognosis (PP) (Maraun et al., 2010). Table 6.17 shows the results of the MLP ConvCNP and
MLP ConvGNP on the VALUE and Germany downscaling tasks and compares these results
to the overall best and the best PP approach from the VALUE framework. Compared to
all 52 downscaling approaches, the MLP ConvCNP and MLP ConvGNP achieve 24%–26%
lower MAE than the best comparable PP model and 18%–20% lower MAE than the overall
best performing approach. In addition, compared to the ConvCNP MLP, the ConvGNP MLP
achieves a moderate but statistically significant improvement in log-likelihood.

In the VALUE task, most weather stations are geographically far apart, so daily maximum
temperatures at these weather stations are only moderately correlated. For this reason, the
benefits of the ConvGNP MLP over the ConvCNP MLP are less pronounced. On the other
hand, in the Germany task, the weather stations are geographically more nearby, so the
daily maximum temperatures in this task are more strongly correlated. This is reflected
in Table 6.17, which shows that, in the Germany task, the MLP ConvGNP gives a bigger im-

127

http://www.value-cost.eu/validationportal
http://www.value-cost.eu/validationportal
http://www.value-cost.eu
http://www.value-cost.eu/
http://www.value-cost.eu/

Mean Sample Another Sample

0.0 2.5 5.0 7.5 10.0

Temperature (◦C)

−4 −2 0 2 4

Difference w.r.t. mean (◦C)

Figure 6.11: Mean prediction by and two samples from the MLP ConvGNP for an arbitrary day in the
Germany downscaling experiment. For the samples, shows the difference with respect to the mean.

provement in log-likelihood over the MLP ConvCNP than in the VALUE task. Note, however,
that the MAE of the MLP ConvGNP is worse than that of the MLP ConvCNP. This is reason-
able, as the MLP ConvGNP must spend model capacity on modelling dependencies, whereas
the MLP ConvCNP can fully focus on the marginals. Figure 6.11 illustrates two samples from
the MLP ConvGNP over Germany. The samples exhibit a realistic degree of variability.

Part 2: downscaling and fusion with the AR ConvCNP.We have demonstrated that
the MLP ConvGNP can be used to successfully model dependencies between outputs in a
statistical downscaling task, improving log-likelihoods over the MLP ConvCNP (Table 6.17)
and enabling coherent samples (Figure 6.11). In this second part of this experiment, we
demonstrate that the AR ConvCNP can also be used for this purpose. Deploying the AR
ConvCNP in this task, however, comes with a significant challenge. In the autoregressive
sampling procedure (Procedure 5.14), samples from themodel will be fed back into the model.
If samples of the AR ConvCNP are to be of the same level of quality as the MLP ConvGNP
and, in particular, are to vary on the same spatial scale, then the AR ConvCNP must handle
context data which varies on this spatial scale. Since the elevation data is on a 1 km–
resolution grid, samples of the MLP ConvGNP will also vary on roughly this spatial scale.
Consequently, the discretisation of the AR ConvCNP must also be a 1 km–resolution grid,
andwe previously argued that such a discretisationwould be prohitively expensive! Wemust
therefore innovate on AR ConvCNP design to come up with a convolutional architecture
that can handle such a fine discretisation at reasonable computational expense.

The architecture that we propose is a multiscale architecture operating on multiple spatial
length scales. Let us divide the context set D = Dlr ∪ Dmr ∪ Dhr into a low-resolution
component Dlr, a medium-resolution component Dmr, and a high-resolution component
Dhr. Let the low-resolution component Dlr consist of features of the context set that vary

128

zhr(•) = CNNhr

 zmr(•)
data(Dhr)

density(Dhr)

zmr(•) = CNNmr

 zlr(•)
data(Dmr)

density(Dmr)

zlr(•) = CNNlr

([
data(Dlr)

density(Dlr)

])

0.01◦ (✓), local to target points (✗)

0.75◦ (✗), covering all of Germany (✓)

0.1◦ (✓), covering a medium-sized square (✓)

resolution of discretisation

positioning of discretisation

Figure 6.12: Multiscale architecture for the AR ConvCNP. A cascade of three convolutional deep sets (The-
orem 4.8) representing a low-resolution, medium-resolution, and high-resolution component. Shows the
resolution and positioning of the internal discretisation for every convolutional deep set. The context set
D = Dlr ∪Dmr ∪Dhr is also divided into a low-resolution Dlr, medium-resolution Dmr, and high-resolution
componentDhr. The low-resolution context dataDlr consists of the 25 coarse-grained ERA-Interim reanalysis
variables. The medium-resolution Dmr and high-resolution context data Dhr both consist of the station
observations and the 1 km–resolution elevation data. See Section 6.5 for more details. The functions data(D)
and density(D) produce respectively the data channel and density channel for context data D; see Model 5.4
and equations (5.4) and (5.5). The maps CNNlr, CNNmr, and CNNhr are translation-equivariant maps between
functions on X . In practice, these maps are all implemented with convolutional neural networks (CNN)
using the discretisation approach outlined in Procedure 5.5. For CNNlr, the internal discretisation is the
0.75◦-resolution grid corresponding to the 25 coarse-grained ERA-Interim reanalysis variables. For CNNmr,
the internal discretisation is a 0.1◦-resolution grid spanning 5◦ more than the most extremal target inputs; the
discretisation does not depend on the context set. For CNNhr, the internal discretisation is a 0.01◦-resolution
grid spanning 0.25◦ more than the most extremal target inputs; the discretisation also does not depend on the
context set.

on a long spatial length scale, the medium-resolution component Dmr of features that vary
on a medium-range spatial length scale, and the high-resolution component Dhr of features
that vary on a short spatial length scale. The central assumption of the architecture is that
predictions for target points depend on precise short-length-scale details Dhr nearby, but
that this dependence weakens as we move away from the target point, starting to depend
more on broad-stroke long-length-scale components Dlr. For example, predictions might
depend on detailed orographic information nearby, but more on general orographic shapes
farther away.

Figure 6.12 depicts the multiscale architecture. The architecture is a cascade of three
convolutional deep sets, parametrised by three CNNs; please see the caption. The low-
resolution CNN handles the context data Dlr with a long spatial length scale. Because these
features have a long spatial length scale, the CNN can get away with a low-resolution

129

discretisation. The output of the low-resolution CNN then feeds into a medium-resolution
CNN. The medium-resolution CNN handles the context data Dmr with a medium spatial
length scale and has a medium-resolution discretisation. Finally, the output of the medium-
resolution CNN feeds into a high-resolution CNN. This CNN handles the context data Dhr

with a short spatial length scale and has a high-resolution discretisation.

The key to the computational efficiency of this architecture is that we construct the high-
resolution discretisation only locally to the target points: a small square covering 0.25◦

more than the most extremal target points. If the target points are confined to a small
region, then the high-resolution grid will also be small, covering only 0.25◦ more than that
region. Crucially, the high-resolution grid will not be constructed over all of Germany, like it
would if we were to more naively apply the ConvCNP with a high-resolution discretisation,
incurring prohitive computational cost. Even though the high-resolution grid is only
constructed locally to the target points, the model can still capture long-range dependencies
via the medium-resolution and low-resolution grids. Namely, the medium-resolution grid
is a square covering 5◦ more than the most extremal target points, and the low-resolution
grid covers all of Germany; see Figure 6.12. To utilise this computational gain, the target
points must be confined to a small region. This perfectly synergises with the autoregressive
sampling procedure (Procedure 5.14), because this procedure evaluates the model one target
point at a time. The training procedure, however, must be adapted. During training, we
subsample the target points to ensure that the target set is always confined to a small square.
See Appendix E.6 for more details.

During the autoregressive sampling procedure, the AR ConvCNP takes in earlier AR samples
from the model. Currently, these is no natural context data to which these samples can be
appended. Therefore, in addition to the ERA-Interim reanalysis variables and the elevation
data, we also let the AR ConvCNP take in observed weather stations as context data. We
will append the earlier AR samples to these weather station context data. To have the model
make appropriate use of the weather station context set, we must randomly divide the
weather stations observations over the context and target set. We let the low-resolution
context data Dlr consist of the 25 coarse-grained ERA-Interim reanalysis variables, and
let the medium-resolution Dmr and high-resolution context data Dhr both consist of the
weather station observations (and earlier AR samples) and the 1 km–resolution elevation
data. When the 1 km–resolution data is fed to the medium-resolution CNN, the data loses
some detail, because the internal discretisation of the medium-resolution CNN is coarser
than the data; however, when it is fed to the high-resolution CNN, the data retains its detail.
The same holds for the weather station observations (and earlier AR samples).

Results. We run the AR ConvCNP only on the Germany task and only on the fifth fold. In

130

Table 6.18: Normalised log-likelihoods and mean absolute errors (MAEs) in the climate downscaling
and fusion experiments. Shows the performance on the Germany task for the fifth fold of the VALUE
protocol (Maraun et al., 2015). The MAE is the mean of the MAE per station. Errors indicate the
central 95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced.

Model Downscaling Fusion
Log-lik. MAE Log-lik. MAE

ConvCNP (MLP) −1.55±0.01 0.94±0.03 −1.55±0.01 0.94±0.03

ConvGNP (MLP) −1.36±0.01 1.09±0.09 −1.38±0.01 1.09±0.09

ConvCNP (AR) −1.36±0.01 1.04±0.04 −1.31±0.01 0.85±0.05

addition to the climate downscaling task, we also perform a data fusion task. Data fusion is
a ubiquitous problem in environmental and climate science, as observations of a variable
are often available from multiple stations, satellite platforms, and model outputs. The data
fusion task is toy experiment to showcase the potential of the ConvCNP for these types of
problems. For the data fusion task, we randomly divide the weather station observations into
a context set and a target set. The model must learn to fuse the observed weather stations
with the ERA-Interim reanalysis variables and elevation data to produce the best predictions
possible for the unobserved weather stations. The MLP ConvCNP and MLP ConvGNP
have no mechanism to incorporate the observed weather stations; hence, these models
simply ignore this data. Table 6.18 shows the results. For the downscaling task the AR
ConvCNP achieves the same log-likelihood and MAE as the MLP ConvGNP, demonstrating
that autoregressive CNPs can be successfully applied to perform statistical downscaling.
For the data fusion task, the AR ConvCNP achieves better log-likelihood and MAE than
the MLP ConvCNP and MLP ConvGNP. On the one hand, this is according to expectations,
because only the AR ConvCNP makes use of the observed weather stations. On the other
hand, the AR ConvCNP is a vastly more involved model than the MLP ConvCNP and MLP
ConvGNP, so it is encouraging to see that the model is functioning correctly and beats the
strong performance of the MLP ConvGNP in this task.

6.6 Conclusion

In this chapter, we conducted four experiments that evaluate and test the limits of existing
and newly proposed neural process models.

First, in Section 6.2, we performed a large-scale bake-off between five existing and eight
newly proposed models (Table 6.1), evaluating every model in a total of 60 different subex-
periments. These subexperiments involved data synthetically generated from Gaussian and
non-Gaussian stationary processes. For the Gaussian experiments, the FullConvGNP outper-

131

formed all other methods, but only for one-dimensional inputs; the FullConvGNP could not
be scaled to two-dimensional inputs. For two-dimensional inputs, the AR ConvCNP outper-
formed all other methods. For the non-Gaussian experiments with one-dimensional inputs,
the AR ConvCNP and ConvNP performed best; and for two-dimensional inputs, the AR
ConvCNP outperformed all other methods by a large margin. The ConvCNP was the only
CNP able to consistently approach the conditional neural process approximation (CNPA;
Definition 3.24) and the FullConvGNP was the only GNP able to consistently approach the
Gaussian neural process approximation (GNPA; Definition 3.25). Overall, between convo-
lutional, attentive, and deep set–based models, convolutional models demonstrated much
better in-distribution performance and superior generalisation performance. This is not sur-
prising, because the data was generated from stationary processes, matching the inductive
bias of ConvNPs (Proposition 5.2). In addition, on the whole, GNPs outperformed LNPs in
Gaussian experiments, whereas LNPs showed an edge in non-Gaussian experiments.

There are two interesting additional takeaways from the synthetic experiments. To be-
gin with, while the ConvGNP showed good interpolation and OOID performance, the
model’s extrapolation performance was poor. The problem is that the ConvGNP uses a
translation-equivariant parametrisation of the eigenmap, but not every eigenmap might
admit a translation-equivariant parametrisation (Section 5.5). Consequently, the ConvGNP
suffers from limited representational capacity. Poor extrapolation performance is a mani-
festation of this issue. This observation underlines the importance of fully basing neural
process architecture on representation theorems (Chapter 4), which guarantee that such
representational capacity problems cannot occur. Moreover, we saw that the AR ConvCNP
exhibited strong performance across the board, and in some cases even outperformed all
other methods by a large margin. This is surprising, because the ConvCNP is a much
simpler model than, for example, the FullConvGNP or ConvNP. This demonstrates that
CNPs, despite being the least sophisticated neural process, actually do have the capacity to
compete with much more sophisticated approaches.

Second, in Section 6.3, we demonstrated that neural process can be used to perform sim-
to-real transfer. In the experiment, we trained neural processes on a stochastic version
of the Lotka–Volterra equations, and then deployed the models on real data: the famous
hare–lynx data set (MacLulich, 1937). On the simulated data, the FullConvGNP and AR Con-
vCNP performed best, and convolutional models generally outperformed non-convolutional
models. However, when evaluated on the real data, the FullConvGNP was paralleled by
the AR ACNP and ANP. This change in ranking was primarily attributed to mismatch
between the real data and data simulator. Secondarily, the AR ACNP and ANP generally
produced more uncertain predictions, and increasing uncertainty helps prevent accidental
overconfidence in the case of model mismatch. On the whole, predictions for the real data

132

looked reasonable. This experiment therefore shows that neural processes can successfully
perform sim-to-real transfer, with the caveat that the models perform only as well as the
simulator matches the real data. Moreover, the experiment shows that calibration in the
case of mismatch can be improved by appropriately inflating uncertainty. Therefore, in the
sim-to-real setting, post-hoc uncertainty calibration using a small part of the real data might
be beneficial. Post-hoc uncertainty calibration has been shown to help for classification
with neural networks (Guo et al., 2017; Tomani et al., 2021).

Third, in Section 6.4, we pushed the limits of neural process models in an experiment with
electroencephalography data. The FullConvGNP performed best, by a large margin, with
the AR ConvCNP ranking second. Convolutional models again generally outperformed
non-convolutional models.

In the last experiment, we explored the ability of neural processes to perform statistical
downscaling. We extended Vaughan et al.’s (2022) approach (a pointwise MLP; Defini-
tion 6.1) for the ConvCNP to the ConvGNP. We first reproduced Vaughan et al.’s baseline
experiment, showing that the ConvCNP and ConvGNP outperform all models in an estab-
lished comparison of 52 downscaling approaches (http://www.value-cost.eu; Maraun
et al., 2015; Gutiérrez et al., 2019). We then performed another downscaling experiment
involving temperatures across Germany. Compared to the ConvCNP, the ConvGNP demon-
strated improved log-likelihoods. In addition, unlike the ConvCNP, the ConvGNP was able
to produce samples showing a realistic degree of variability (Figure 6.11), which is espe-
cially important in downstream applications. Afterwards, we considered the AR ConvCNP,
which required a novel multiscale convolutional architecture (Figure 6.12) to overcome
prohibitive computational cost. The AR ConvCNP demonstrated performance on par with
the ConvGNP. In a variation on the downscaling experiment, involving data fusion, the AR
ConvCNP was even able to outperform the ConvCNP and ConvGNP. We remark, however,
that Vaughan et al.’s approach for the ConvCNP and ConvGNP was not designed for this
data fusion setup. These climate downscaling and fusion experiments demonstrate the
considerable performance and flexibility of convolutional deep sets (Theorem 4.8) and more
generally the neural process framework.

All in all, when stationarity is a reasonable assumption, convolutional neural process models
demonstrate strong in-distribution and generalisation performance and outperform their
non-convolutional counterparts, at least in experiments in this chapter. If stationarity is not
reasonable, it might be possible to include features that render the data stationary, like in
the climate experiments; otherwise, a non-convolutional approach or a even combination
of a convolutional and non-convolutional approach may be the better choice.

In terms of the overall best performing models, when dependencies between target outputs

133

http://www.value-cost.eu

are not important, the ConvCNP emerged as the clear winner. If dependencies are important
and the data is roughly Gaussian, the FullConvGNP tended to be the best performing model,
whenever it is computationally feasible. Barring the FullConvGNP, for roughly Gaussian
data, the AR ConvCNP and ConvGNP generally exhibited strong overall performance at
feasible computational cost. For more non-Gaussian data, the AR ConvCNP and ConvNP
were the best performing models.

In terms of the various classes of neural processes, if the data is roughly Gaussian, GNPs
tended to outperform LNPs. For more non-Gaussian data, LNPs tended to show an edge
over GNPs. In either case, AR CNPs showed strong performance and, in some cases, put
forward the best performing model. AR CNPs, however, suffer high computational cost at
test time and are no longer consistent models. This lack of consistency comes with slew of
problems unique to AR CNPs (Section 5.6).

Finally, we remark that all experimental results depend strongly on the precise details of the
model architectures and the precise execution of the experiments. Whilst we attempted to
optimise the performance of all models and attempted to execute all experiments in a way
that is as reproducible, as careful, and as fair as possible, improvements are almost certainly
possible. One particular improvement is the use of a cyclical learning rate schedule, which
could drastically reduce training time and generally boost performance (Smith, 2017).

134

7 | A Software Framework for
Composing Neural Processes

Abstract. This chapter presents a software abstraction called coders that enables the design
of cohesive and loosely coupled building blocks for neural processes. Coders form the
basis of a Python package neuralprocesses available at https://github.com/wesselb/
neuralprocesses. neuralprocesses implements all models in this thesis.

Outline. Section 7.1 argues why a software abstraction is necessary. In Section 7.2, we
explain how models are constructed in neuralprocesses ; and in Section 7.3, we explain a
key principle of neuralprocesses . Afterwards, in Section 7.4, we introduce the proposed ab-
straction coders. Finally, in Section 7.5, we illustrate how coders enable the design of neural
processes by putting together more elementary building blocks in different ways.

Attributions and relationship to prior work. The abstraction presented in this chapter
was conceived in collaborationwith JonathanGordon in NeuralProcesses.jl (Bruinsma and
Gordon, 2022b). neuralprocesses (Bruinsma, Andersson, Markou, and Requeima, 2022a) is
primarily developed by the author, but features contributions from Tom Andersson, Stratis
Markou, and James Requeima. All work was supervised by Richard E. Turner.

7.1 Introduction

In the previous chapter, we put a wide variety of neural process models to the test. Of course,
all these models had to be implemented. When implementing a large number models, it is
undesirable to reimplement every model from scratch, completely starting over every time
again. Without any code reuse, a code base becomes hard to maintain and improve. For
example, if a detail of deep sets would need to change, then this change would need to be
effected in every model that uses deep sets, an error-prone and tedious undertaking. Intead,
one would prefer to make this change in only one place. This can be achieved by carefully
crafting modular, composable building blocks, and constructing neural process models by
putting together these building blocks in different ways. Then, when a building block is
improved, that improvement immediately benefits every model built from that block.

Two desirable qualities of a software design are low coupling and high cohesion (Stevens

135

https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses

et al., 1974). Low coupling means that modules communicate via simple and transparant
interfaces and that connections between modules are minimised; and high cohesion means
that elements within a module belong together. Succesfully designing a modular imple-
mentation of neural processes is difficult, because there are many desirable features which
all interact in particular ways: latent variables, attentive mechanisms, functional encodings,
multidimensional outputs, et cetera. Carelessly isolating these features runs the risk of high
coupling. This chapter proposes a simple software abstraction called coders that enables the
design of cohesive and loosely coupled building blocks for neural processes.

The software abstraction proposed in this chapter forms the basis of a Python (van Ros-
sum, 1995) package called neuralprocesses (Bruinsma et al., 2022a), which is available at
https://github.com/wesselb/neuralprocesses. neuralprocesses implements all models
presented in this thesis (and more) and was also used to perform all experiments. This
chapter, however, will not be a user manual nor a technical description of neuralprocesses ;
for that, we refer the reader to https://github.com/wesselb/neuralprocesses. We will
solely focus on the underlying abstraction. Before presenting this software abstraction in
Section 7.4, we first discuss how models are constructed in neuralprocesses (Section 7.2)
and introduce a key principle of the package (Section 7.3).

7.2 Model Design

Recall that a neural processes parametrises a prediction map πθ : D → Q where Q is
some variational family (Section 2.2). To parametrise a prediction map, we argued that
encoder–decoder architectures are a convenient way to break up the model (Section 2.4).
This choice is embodied in neuralprocesses , where models are compositions of encoders
and decoders:

import neuralprocesses.torch as nps

encoder = . . .

decoder = . . .

model = nps.Model(encoder, decoder) # Composition of `encoder` and `decoder`

The above code uses PyTorch (Paszke et al., 2019) as the backend. Other backends can be
used by changing the import. For example, to use TensorFlow (Abadi et al., 2016), change
the import to import neuralprocesses.tensorflow as nps . In fact, the implementation of
neuralprocesses is backend agnostic and can easily be extended to other frameworks, like
JAX (Bradbury et al., 2018). This backend-agnostic implementation is facilitated by the

136

https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses

Python package LAB (Bruinsma et al., 2022c).

Once a model is defined, it can be run forward to make a prediction for some context set D.
If D = (xc, yc) and x = xt , then

pred = model(xc, yc, xt)

represents the distribution Pxπθ(D). For any model constructed with nps.Model , the
package provides functionality to automatically compute log-likelihoods, autoregressive
log-likelihoods (Section 5.6), the ELBO objective for latent-variable neural processes (LNPs;
Garnelo et al., 2018b), the ML objective for LNPs (Foong et al., 2020), all whilst appropriately
dealing with multidimensional inputs and outputs, et cetera. In this chapter, we will focus
on how encoder and decoder can be constructed in a modular way.

7.3 Functions as Intermediate Representations

Our approach will be to implement encoder and decoder as compositions of transformations.
To flexibly compose transformations, what comes out of one transformation should be a
compatible input for another. We will achieve this by letting all transformations adhere to
an agreed-upon interface. Letting all transformations adhere to one interface is challen-
ging, because neural processes deal with a variety of objects: data sets, vector encodings,
functional encodings, attentive mechanisms, latent variables, predictions, et cetera.

To deal with the challenging variety of objects, we homogenise what is passed between
transformations. In particular, we propose to let all intermediate representations be functions.
Some examples are as follows:

• A context set (x(c),y(c)) ∈ D is represented as the function mapping from the inputs
to the outputs:

f : {x(c)1 , . . . , x
(c)
N } → {y

(c)
1 , . . . , y

(c)
N }, f(x(c)i) = y(c)i . (7.1)

Note that this function is a map between finite sets.

• A vector encoding x ∈ RK is represented as a function mapping from the empty set
to the vector:

f : ∅→ {x}, f() = x. (7.2)

137

• A functional encoding z(•) ∈ ZX is already a function:

f : X → Z, f(x) = z(x). (7.3)

• An attentive mechanism assigns a vector z(t)n to every target input x(t), which is repres-
ented as function just like context sets:

f : {x(t)1 , . . . , x
(t)
N} → {z

(t)
1 , . . . , z

(t)
N}, f(x(t)i) = z(t)i . (7.4)

• A prediction at target inputs x(t) ∈ XN assigns some parameters θ(t)
i to every tar-

get input x(t)i , e.g. a marginal mean, a noise variance, and a covariance embedding
(Appendix E.1). The prediction is represented as a function just like context sets:

f : {x(t)1 , . . . , x
(t)
N} → {θ

(t)
1 , . . . ,θ

(t)
N}, f(x(t)i) = θ(t)

i . (7.5)

The above list is non-exhaustive, but it should give a sense of how objects can be represented
as functions.

Representing everything with functions is convenient for two reasons:

1. Functions are flexible enough to naturally represent most objects of interest.

2. Functions are the right intermediate representation to express symmetries. For
example, maps on functions can be translation equivariant (Definition 2.4).

Functional representations can be infinite dimensional. In neuralprocesses , however,
functions are always maps between finite sets. For example, the functional encoding (Defin-
ition 4.6) in convolutional neural processes (ConvNPs; Section 5.3) is approximated with a
discretisation (Procedure 5.5), which turns the infinite-dimensional functional encoding
into a mapping between finite sets.

In neuralprocesses , functions between finite sets are represented as tuples (xz, z) . A
tuple (xz, z) corresponds to the function xz[i] 7→ z[i] where i is a potentially multidi-
mensional index. We write (xz, z) rather than (x, y) to emphasise that (xz, z) is an in-
termediate representation and is not necessarily connected to the context or target set.

In summary, in neuralprocesses , everything is representedwith a function. These functions
are always maps between finite sets and are represented by tuples (xz, z) where xz is
the domain of the function and z the codomain.

138

7.4 Coders

By representing everything with functions, encoder and decoder become transformations

of functions. In neuralprocesses , there is no fundamental distinction between encoder and
decoder : both are implemented with the same building blocks. The central abstraction that
we propose is called coders, which refers to a unification of encoder and decoder .

On a high level, coders are transformations of functions. Crucially, coders can be composed
to make new coders. Coders form the fundamental building blocks which we will use to
construct neural processes. In particular, encoder and decoder are coders and both are a
composition of more elementary coders. We now give the definition of a coder.

Definition 7.1 (Coder). A coder is a transformation which transforms an input function
Xi → Zi and a target domain Xt into an output function Xo → Zo.

The most important example of a coder is the map from a data setD and some target inputs
x to the prediction Pxπθ(D) for the corresponding target outputs. For this coder, the input
function is the data set D, the target domain is the set of target inputs x, and the output
function is the prediction Pxπθ(D) for the target outputs.

In practice, a coder is a function coder(xz, z, x) where (xz, z) is the input function and
x is the target domain. Moreover, the output of the coder xz2, z2 = coder(xz, z, x) is
the output function:

xz2, z2

output function

= coder(xz, z

input function

,

target domain

x) (7.6)

An important property of coders is that they can be composed. This property is what
enables a compositional construction of neural processes. Let coder1 and coder2 be two
coders. Then the composition is defined as follows:

def compostion(xz, z, x):

xz, z = coder1(xz, z, x)

xz, z = coder2(xz, z, x)

return xz, z

Note that, in the composition, when coder2 is applied, xz, z are modified by coder1 , but
the target domain x is unaffected. In neuralprocesses , the composition of coder1 and
coder2 can be constructed with nps.Chain(coder1, coder2) .

To succintly summarise, all building blocks are coders, and coders can be composed.

139

7.5 Building Existing and New Models

Having introduced coders, we now illustrate how this abstraction enables the design of
neural processes by putting together building blocks in different ways. In neuralprocesses ,
the blueprint of a model is the following pattern:

encoder = nps.Chain(

coder1,

coder2,
...
nps.· · · Likelihood(),

)

decoder = nps.Chain(

coder3,

coder4,
...
nps.· · · Likelihood(),

)

model = nps.Model(encoder, decoder)

In this blueprint, the encoder and decoder are compositions of more elementary coders.
Both compositions end in a so-called likelihood. The likelihood is a necessary component of
encoder and decoder and must always be last in the composition. The purpose of the likeli-
hood is to turn the output of the coder into a probabilistic prediction; nps.· · · Likelihood()
determines the form of that prediction. For example, conditional neural processes (CNPs;
Garnelo et al., 2018a) use a fixed, deterministic encoding. In that case, encoder uses
nps.DeterministicLikelihood() . Latent-variable neural processes (LNPs; Garnelo et al.,
2018b), on the other hand, use a latent variable. This can be achieved by using, e.g.,
nps.HeterogeneousGaussianLikelihood() . We give two examples of models that illustrate
the compositional approach that neuralprocess offers.

Our first example is the Conditional Neural Process (CNP; Garnelo et al., 2018a), which can
be implemented as follows:

encoder = nps.Chain(

nps.DeepSet(nps.MLP(· · ·)), # Deep set (Theorem 4.5) with ϕθ given by an MLP

nps.DeterministicLikelihood(),

)

decoder = nps.Chain(

nps.MLP(· · ·),

140

nps.HeterogeneousGaussianLikelihood(),

)

cnp = nps.Model(encoder, decoder)

Note that we suppress configuration settings of neural network components. Also note that
the multi-layer perceptron (MLP) also functions as a coder. We can transform the CNP into
a Neural Process (NP; Garnelo et al., 2018b) simply by replacing the deterministic likelihood
with a stochastic one:

encoder = nps.Chain(

nps.DeepSet(nps.MLP(· · ·)),
nps.MLP(· · ·),
nps.HeterogeneousGaussianLikelihood(),

)

decoder = nps.Chain(

nps.MLP(· · ·),
nps.HeterogeneousGaussianLikelihood(),

)

np = nps.Model(encoder, decoder)

As Garnelo et al. (2018b) mention, this design can be extended by, in parallel with the
stochastic encoding, also including a deterministic encoding:

encoder = nps.Parallel(

nps.Chain(# Deterministic encoder

nps.DeepSet(nps.MLP(· · ·)),
nps.MLP(· · ·),
nps.DeterministicLikelihood(),

),

nps.Chain(# Stochastic encoder

nps.DeepSet(nps.MLP(· · ·)),
nps.MLP(· · ·),
nps.HeterogeneousGaussianLikelihood(),

),

)

decoder = nps.Chain(

nps.Concatenate(), # Turn the two encodings into one

nps.MLP(· · ·),
nps.HeterogeneousGaussianLikelihood(),

)

141

np = nps.Model(encoder, decoder)

In the deterministic encoder, we could replace nps.DeepSet with an attentive mechanism
nps.Attention , which would create an Attentive Neural Process (ANP; Kim et al., 2019).
Alternatively, rather than using two separate deep sets, perhaps one wants to use a single
deep set in a two-headed architecture:

encoder = nps.Chain(

nps.DeepSet(nps.MLP(· · ·)),
nps.MLP(· · ·),
nps.Splitter(· · · , · · ·),
nps.Parallel(

nps.DeterministicLikelihood(),

nps.HeterogeneousGaussianLikelihood(),

),

)

We see that the ability to compose elementary coders allows us to quickly explore various
model designs.

Our second example is the Convolutional Conditional Neural Process (ConvCNP; Model 5.4),
which can be implemented as follows:

encoder = nps.FunctionalCoder(

The encoder produces a functional encoding (Definition 4.6), which is

discretised (Procedure 5.5).
nps.Discretisation(· · ·),
nps.Chain(

nps.PrependDensityChannel(),

`nps.SetConv` performs interpolation with a Gaussian kernel like in

Procedure 5.5. The combination of coders in this `nps.Chain` implements

the encoder encθ of a convolutional deep set (Theorem 4.8).
nps.SetConv(· · ·),
nps.DivideByFirstChannel(),

nps.DeterministicLikelihood(),

),

)

decoder = nps.Chain(

nps.UNet(· · ·),
nps.SetConv(· · ·),

142

nps.HeterogeneousGaussianLikelihood(),

)

convcnp = nps.Model(encoder, decoder)

To turn the ConvCNP into a Convolutional Gaussian Neural Process (ConvGNP; Model 5.12),
we simply replace the likelihood of the decoder with nps.LowRankGaussianLikelihood(· · ·) .
And to turn the ConvCNP into a Convolutional Neural Process (ConvNP; Foong et al.,
2020), we simply replace nps.DeterministicLikelihood() in the encoder with another
nps.UNet(· · ·) and nps.HeterogeneousGaussianLikelihood() . In Section 5.7, we briefly
philosophised that a ConvGNP could even be used as the encoder and/or decoder in a
ConvNP. Also this model is now simply explored:

encoder = nps.FunctionalCoder(

nps.Discretisation(· · ·),
nps.Chain(

nps.PrependDensityChannel(),

nps.SetConv(· · ·),
nps.DivideByFirstChannel(),

nps.UNet(· · ·),
nps.LowRankGaussianLikelihood(· · ·),

),

)

decoder = nps.Chain(

nps.UNet(· · ·),
nps.SetConv(· · ·),
nps.LowRankGaussianLikelihood(· · ·),

)

novel_convnp = nps.Model(encoder, decoder)

Using a ConvGNP as the encoder and/or decoder in a ConvNP might improve predictive
uncertainty when trained with the ELBO objective. This model has not yet been proposed
in the literature.

7.6 Conclusion

In this chapter, we briefly explored a software abstraction called coders. In the Python
package neuralproceses , the abstraction of coders is used to define building blocks that
can be put together in different ways to construct neural process models. The simplicity of
this compositional approach enables the user to rapidly explore a large model space.

143

By carefully defining a universal interface that all building blocks adhere to, the goal is to
enable an implementation of the components of neural processes that are useful beyond
this thesis. In an ideal world, there would only be a single, gold-standard implementation of
every neural process component that is highly optimised and used by every project. Such
an implementation needs to be flexible enough to suit every project’s needs. This flexibility,
however, needs to not come at the cost of simplicity of use. The abstraction of coders hopes
to strike this balance right.

144

8 | Conclusion

The contributions of this thesis are best interpreted as new tools in the neural process toolbox.
These new tools are certainly not meant to replace prior work, but rather to add to existing
methods. Every tool has a particular regime where it works well and where it is the right
choice. It is the art of the neural process practitioner to correctly identify which tools are best
suited for a particular application. To conclude this thesis, we recapitulate the tools put for-
ward in this thesis and provide advice for how the practitioner may decide to use them.

8.1 New Tools in the Neural Process Toolbox

The primary tool that this thesis puts forward are convolutional deep sets (Theorems 4.8
and 4.9). We used convolutional deep sets to construct convolutional neural processes
(ConvNPs; Section 5.3). In problems where the data is roughly stationary, convolutional
neural processes offer strong alternatives to existing neural processes. The models con-
structed in Section 5.3, however, are just a few of many. The more powerful idea is that
convolutional deep sets are a flexible neural network building block that can be gener-
ally used in spatial, temporal or spatio–temporal data problems. A great illustration of
this idea is Section 6.5, where, following the approach by Vaughan et al. (2022), we used
neural processes to perform statistical downscaling. In the setup of the ConvCNP and
ConvGNP, convolutional deep sets in combination with a pointwise MLP (Definition 6.1)
provided a mechanism to combine coarse-grained ERA-Interim reanalysis variables with
high-resolution elevation data (Vaughan et al., 2022); and in the multiscale architecture
of the AR ConvCNP, a cascade of convolutional deep sets seamlessly stitched together
convolutional neural networks operating at different resolutions. Although convolutional
deep sets are flexible and can work well, we emphasise that the technique is not a panacea.
The main limitation of convolutional deep sets are demanding computational requirements
deriving from the discretisation (Procedure 5.5). Since we first published the Convolutional
Conditional Neural Process (ConvCNP; Gordon et al., 2020), the ConvCNP has been exten-
ded to symmetries other than translation equivariance (Kawano et al., 2021; Holderrieth
et al., 2021) and formed the basis for various models in a variety of applications (Foong
et al., 2020; Shysheya, 2020; Petersen et al., 2021; Wang et al., 2021; Vaughan et al., 2021;
Pondaven et al., 2022; Vaughan et al., 2022).

145

The second tool that this thesis proposes is the idea of directly parametrising the covariance
between target outputs. This gave rise to Gaussian neural processes (GNPs; Section 5.5).
GNP are a contender to latent-variable neural processes (LNPs; Garnelo et al., 2018b) by
also modelling dependencies between target outputs. In problems where the data is roughly
Gaussian, GNPs are a promising new model class to explore. Like with convolutional deep
sets, the idea of directly parametrising the covariance between target outputs is useful
beyond the models presented in Chapter 5. For example, we used the technique to enable
correlated samples in the climate downscaling experiment (Section 6.5), and we illustrated
that a GNP can even be the encoder and/or decoder in a LNP (Section 7.5), potentially
combining the benefits of both classes. Besides the GNPs explored in this thesis, many more
approaches to parametrising the covariance are possible. Since we first published the Fully
Convolutional Gaussian Neural Process (FullConvGNP; Bruinsma et al., 2021c; Markou
et al., 2022), we used the FullConvGNP to meta-learn posterior distributions in PAC-Bayes
bounds (Foong et al., 2021).

The third and final tool presented by this thesis are autoregressive conditional neural
processes (AR CNPs; Section 5.6). Although CNPs are the simplest of neural processes, by
deploying CNPs in an autoregressive fashion, CNPs have the capacity to compete with
much more sophisticated approaches. Most notably, across all experiments, Gaussian or
non-Gaussian, the AR ConvCNP has consistently been amongst the best performing models.
AR CNPs equip the neural process framework with a new knob where modelling complexity
and computational expense at training time can be traded for computational expense at test
time. AR CNPs have not yet been published.

8.2 Advice for the Neural Process Practitioner

The neural process framework offers a great variety of models. To choose a model, one
should first consider the general strengths and weakness of the various classes of neural
processes. Just like there is no free lunch, every class of neural processes gives up something:
CNPs do not model dependencies; GNPs only produce Gaussian predictions; LNPs require
approximations and consequently produce inferior uncertainty; and AR CNPs are no longer
consistent and have high computational cost at test time. See also Table 5.2. Is it the job of
the neural process practitioner to decide which shortcoming is most acceptable. Within
a class of neural processes, choosing the right model depends on the application, but the
summary in Section 6.6 could be used to guide your decision.

Rather than choosing an existing model, the neural process framework can also be used
to tailor a solution to a particular data problem. For example, rather than making the
choice between convolutional deep sets and an attentive mechanism, one may perfectly

146

well combine the two. In fact, mixing and matching the building blocks of neural processes
is the best way to utilise the neural process framework!

To incorporate context data into a neural process architecture, the three main generic
approaches are deep sets (Theorem 4.5; Zaheer et al., 2017; Edwards et al., 2017; Garnelo
et al., 2018b; Wagstaff et al., 2019), an attentive mechanism (Bahdanau et al., 2015; Vaswani
et al., 2017; Kim et al., 2019), or convolutional deep sets (Theorems 4.8 and 4.9). We now give
general considerations that may help deciding between the three. Deep sets are the most
general and computationally cheapest approach, but are not very parameter efficient and
might yield models that underfit. An attentive mechanism often improves over deep sets,
generally yielding better performance. Attentive mechanisms, however, are computationally
more expensive and do not construct a fixed-dimensional intermediate encoding like deep
sets do. If the data is stationary or can be rendered approximately stationary by including
more features, then convolutional deep sets can be used. Convolutional deep sets are only
suitable for one, two, or three-dimensional inputs, and the computational cost is determined
by the discretisation (Procedure 5.5). When convolutional deep sets are appropriate, they
often yield superior performance.

To successfully deploy convolutional deep sets, we have a few words of more specific
advice. To begin with, the discretisation must not be unnecessarily fine, because that
incurs unnecessary computational expensive; nor must it be too coarse, because that loses
important detail of the data. Our recommendation is to decide on the smallest length scale in
the data that needs to be captured, and to make the interpoint spacing of the discretisation
half or one-fourth of that length scale. Second, although theory says that the length scale
of the Gaussian kernels may be anything, practice shows that it must be chosen right. Our
experience is that models learn more quickly if the length scales are sufficiently small, but
not too small. We advice to initialise the length scales of the Gaussian kernels to twice
the interpoint spacing of the discretisation. Smaller length scales might introduce visual
artefacts, and larger length scales might hamper performance. Third, the receptive field
of the convolutional neural network (CNN) should be controlled explicitly. It should be
set according to how far observations should influence predictions. For a typical CNN,
the receptive field of a CNN is determined by the number of layers and kernel sizes of the
convolutional filters. Finally, for a given receptive field, the capacity of the CNN should to
be tuned appropriately, and here one can use all tricks in the book. A honourable mention
is the U-Net architecture (Ronneberger et al., 2015), which effectively achieves the large
receptive fields at reasonable parameter counts.

147

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng (2016). “TensorFlow: A System
for Large-Scale Machine Learning”. In USENIX Symposium on Operating Systems Design

and Implementation. Vol. 12, pp. 265–283. (Cited on page 136.)
Adler, R. J. (1981). The Geometry of Random Fields. John Wiley & Sons. (Cited on page 75.)
Alquier, P., T. T. Mai, and M. Pontil (2017). “Regret Bounds for Lifelong Learning”. In

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.
Vol. 54. Proceedings of Machine Learning Research. PMLR. Electronic print: https:
//arxiv.org/abs/1610.08628. (Cited on page 28.)

Amit, R. and R. Meir (2018). “Meta-Learning by Adjusting Priors Based on Extended PAC-
Bayes Theory”. In Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. Proceedings of Machine Learning Research. PMLR. Electronic print: https:
//arxiv.org/abs/1711.01244. (Cited on page 28.)

Andrychowicz, M., M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. de Freitas (2016). “Learning to Learn by Gradient Descent by Gradient Descent”. In
Advances in Neural Information Processing Systems 29. Curran Associates, Inc. Electronic
print: https://arxiv.org/abs/1606.04474. (Cited on pages 2, 8.)

Aronszajn, N. (1950). “Theory of Reproducing Kernels”. In Transactions of the American

Mathematical Society 68.3, pp. 337–404. (Cited on page 57.)
Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). “Layer Normalization”. In arXiv:1607.06450.

Electronic print: https://arxiv.org/abs/1607.06450. (Cited on page 198.)
Bahdanau, D., K. Cho, and Y. Bengio (2015). “Neural Machine Translation by Jointly Learning

to Align and Translate”. In Proceedings of the 3rd International Conference on Learning

Representations. Electronic print: https://arxiv.org/abs /1409.0473. (Cited on
pages 147, 198.)

Baño-Medina, J., R. Manzanas, and J. M. Gutiérrez (2020). “Configuration and Intercom-
parison of Deep Learning Neural Models for Statistical Downscaling”. In Geoscientific

Model Development 13.4, pp. 2109–2124. doi: 10.5194/gmd-13-2109-2020. url: https:
//gmd.copernicus.org/articles/13/2109/2020/. (Cited on page 124.)

Baxter, J. (1998). “Theoretical Models of Learning to Learn”. In Learning to Learn. Springer
Science & Business Media. Chap. 4, pp. 71–94. (Cited on page 28.)

148

https://arxiv.org/abs/1610.08628
https://arxiv.org/abs/1610.08628
https://arxiv.org/abs/1711.01244
https://arxiv.org/abs/1711.01244
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1409.0473
https://doi.org/10.5194/gmd-13-2109-2020
https://gmd.copernicus.org/articles/13/2109/2020/
https://gmd.copernicus.org/articles/13/2109/2020/

Baxter, J. (2000). “A Model of Inductive Bias Learning”. In Journal of Artificial Intelligence

Research 12, pp. 149–198. Electronic print: https://arxiv.org/abs/1106.0245. (Cited
on page 28.)

Begleiter, H. (2022). EEG Database Data Set. Neurodynamics Laboratory, State University
of New York Health Center. url: https://archive.ics.uci.edu/ml/datasets/eeg+
database. (Visited on 25/06/2022.) (Cited on page 120.)

Bengio, S., Y. Bengio, and J. Cloutier (1995). “On the Search for New Learning Rules in
ANNs”. In Neural Processing Letters 2, pp. 26–30. (Cited on page 7.)

Bengio, Y., S. Bengio, and J. Cloutier (1990). On the Search for New Learning Rules in ANNs.
Tech. rep. Dêpartment d’Informatique et al de Recherche Opêrationnelle, Universitê de
Montrêal. (Cited on page 7.)

Berkovich, P., E. Perim, and W. P. Bruinsma (2020). “GP-ALPS: Automatic Latent Process
Selection for Multi-Output Gaussian Process Models”. In Proceedings of the 2nd Sym-

posium on Advances in Approximate Bayesian Inference. Vol. 118. Proceedings of Machine
Learning Research. PMLR. Electronic print: https://arxiv.org/abs/1911.01929.
(Cited on page 11.)

Bhardwaj, A., V. Misra, A. Mishra, A. Wootten, R. Boyles, J. H. Bowden, and A. J. Terando
(2018). “Downscaling Future Climate Change Projections Over Puerto Rico Using a
Non-Hydrostatic Atmospheric Model”. In Climatic Change 147.1, pp. 133–147. issn:
1573-1480. doi: 10.1007/s10584-017-2130-x. (Cited on page 123.)

Billingsley, P. (1999). Convergence of Probability Measures. 2nd ed. Wiley Series in Probability
and Statistics: Probability And Statistics, p. 277. (Cited on page 47.)

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A.
Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang (2018). JAX: Composable

Transformations of Python+NumPy Programs. url: http://github.com/google/jax.
(Cited on page 136.)

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P.
Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei (2020). “Language Models Are Few-Shot Learners”. In Advances in Neural

Information Processing Systems 33. Curran Associates, Inc. Electronic print: https :
//arxiv.org/abs/2005.14165. (Cited on page 55.)

Bruinsma, W. P. (2022a). Algebra: Algebraic Structures. Python package, registered on PyPI as
algebra. url: https://github.com/wesselb/algebra. (Visited on 01/06/2022.) (Cited
on page 13.)

149

https://arxiv.org/abs/1106.0245
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://arxiv.org/abs/1911.01929
https://doi.org/10.1007/s10584-017-2130-x
http://github.com/google/jax
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://github.com/wesselb/algebra

Bruinsma, W. P. (2022b). FDM: Estimate Derivatives with Finite Differences. Python pack-
age, registered on PyPI as fdm. url: https://github.com/wesselb/fdm. (Visited on
01/06/2022.) (Cited on page 13.)

Bruinsma, W. P. (2022c). GPAR: Implementation of the Gaussian Process Autoregressive Re-

gression Model. Python package, registered on PyPI as gpar. url: https://github.com/
wesselb/gpar. (Visited on 01/06/2022.) (Cited on page 13.)

Bruinsma,W. P. (2022d).GPCM: Implementation of the GPCM and Variations. Python package,
registered on PyPI as gpcm. url: https://github.com/wesselb/gpcm. (Visited on
01/06/2022.) (Cited on page 12.)

Bruinsma, W. P. (2022e). Matrix: Structured Matrices. Python package, registered on PyPI as
backends-matrix. url: https://github.com/wesselb/matrix. (Visited on 01/06/2022.)
(Cited on page 13.)

Bruinsma, W. P. (2022f). MLKernels: Kernels, the Machine Learning Ones. Python package,
registerd on PyPI as mlkernels. url: https://github.com/wesselb/mlkernels. (Visited
on 01/06/2022.) (Cited on page 13.)

Bruinsma, W. P. (2022g). OILMM: Implementation of the Orthogonal Instantaneous Linear

Mixing Model. Python package, registered on PyPI as oilmm. url: https://github.com/
wesselb/oilmm. (Visited on 01/06/2022.) (Cited on page 12.)

Bruinsma, W. P., T. Andersson, S. Markou, and J. Requeima (2022a). NeuralProcesses: A
Framework for Composing Neural Processes in Python. Python package, registered on
PyPI as neuralprocesses. url: https : / / github . com / wesselb / neuralprocesses.
(Visited on 01/06/2022.) (Cited on pages 10, 12, 135, 136.)

Bruinsma, W. P., A. Y. K. Foong, and R. E. Turner (2021a). What Keeps a Bayesian Awake

at Night? Part 1: Day Time. url: https://mlg-blog.com/2021/03/31/what-keeps-a-
bayesian-awake-at-night-part-1.html. (Cited on page 12.)

Bruinsma, W. P., A. Y. K. Foong, and R. E. Turner (2021b). What Keeps a Bayesian Awake

at Night? Part 2: Night Time. url: https://mlg-blog.com/2021/03/31/what-keeps-a-
bayesian-awake-at-night-part-2.html. (Cited on page 12.)

Bruinsma, W. P. and J. Gordon (2022b). NeuralProcesses.jl: A Framework for Composing

Neural Processes in Julia. Julia package, unregistered. url: https : / / github . com /
wesselb/neuralprocesses. (Visited on 01/06/2022.) (Cited on pages 10, 12, 135.)

Bruinsma, W. P. and Z. B. Patel (2022c). LAB: A Generic Interface for Linear Algebra Backends.
Python package, registered on PyPI as backends. url: https://github.com/wesselb/
lab. (Visited on 01/06/2022.) (Cited on pages 13, 137.)

Bruinsma, W. P. and Z. B. Patel (2022d). Stheno: Gaussian Process Modelling in Python. Python
package, registered on PyPI as stheno. url: https://github.com/wesselb/stheno.
(Visited on 01/06/2022.) (Cited on page 12.)

150

https://github.com/wesselb/fdm
https://github.com/wesselb/gpar
https://github.com/wesselb/gpar
https://github.com/wesselb/gpcm
https://github.com/wesselb/matrix
https://github.com/wesselb/mlkernels
https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm
https://github.com/wesselb/neuralprocesses
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-1.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-1.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-2.html
https://mlg-blog.com/2021/03/31/what-keeps-a-bayesian-awake-at-night-part-2.html
https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/neuralprocesses
https://github.com/wesselb/lab
https://github.com/wesselb/lab
https://github.com/wesselb/stheno

Bruinsma, W. P., E. Perim, W. Tebbutt, J. S. Hosking, A. Solin, and R. E. Turner (2020).
“Scalable Exact Inference in Multi-Output Gaussian Processes”. In Proceedings of the

22nd International Conference on Artificial Intelligence and Statistics. Vol. 89. Proceedings
of Machine Learning Research. PMLR. Electronic print: https://arxiv.org/abs/1911.
06287. (Cited on page 11.)

Bruinsma, W. P., J. Requeima, A. Y. K. Foong, J. Gordon, and R. E. Turner (2021c). “The Gaus-
sian Neural Process”. In Proceedings of the 3rd Symposium on Advances in Approximate

Bayesian Inference. Electronic print: https://arxiv.org/abs/2101.03606. (Cited on
pages 8, 9, 11, 14, 19, 25, 27, 50, 65, 89, 146.)

Bruinsma, W. P. and W. Tebbutt (2022e). Varz: Painless Optimisation of Constrained Variables

in AutoGrad, TensorFlow, PyTorch, and JAX. Python package, registered on PyPI as varz.
url: https://github.com/wesselb/varz. (Visited on 01/06/2022.) (Cited on page 13.)

Bruinsma, W. P., M. Tegnér, and R. E. Turner (2022f). “Modelling Non-Smooth Signals
With Complex Spectral Structure”. In Proceedings of the 25th International Conference on

Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. PMLR.
Electronic print: https://arxiv.org/abs/2203.06997. (Cited on page 10.)

Bruinsma, W. P., F. Vicentini, and R. Comelli (2022g). Plum: Multiple Dispatch in Python.
Python package, registered on PyPI as plum-dispatch. url: https://github.com/
wesselb/plum. (Visited on 01/06/2022.) (Cited on page 13.)

Cagliari, F., B. D. Fabio, and C. Landi (2015). “The Natural Pseudo-Distance as A Quotient
Pseudo-Metric, and Applications”. In Forum Mathematicum 27.3, pp. 1729–1742. doi:
doi:10.1515/forum-2012-0152. url: https://doi.org/10.1515/forum-2012-0152.
(Cited on page 53.)

Chen, Q., C. Shui, and M. Marchand (2021). “Generalization Bounds for Meta-Learning: An
Information-Theoretic Analysis”. In Advances in Neural Information Processing Systems

34. Curran Associates, Inc. Electronic print: https://arxiv.org/abs/2109.14595.
(Cited on page 28.)

Chollet, F. (2017). “Xception: Deep Learning With Depthwise Separable Convolutions”.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Electronic print: https://arxiv.org/abs/1610.02357. (Cited on pages 126, 202.)

Coker, B., W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez (2022). “Wide Mean-Field
Bayesian Neural Networks Ignore the Data”. In Proceedings of the 25th International

Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning
Research. PMLR. Electronic print: https://arxiv.org/abs/2202.11670. (Cited on
page 10.)

Cybenko, G. (1989). “Approximation by Superpositions of a Sigmoidal Function”. In Math-

ematics of Control, Signals, and Systems 2.4, pp. 303–314. issn: 0932-4194. doi: 10.1007/
BF02551274. (Cited on pages 51, 55.)

151

https://arxiv.org/abs/1911.06287
https://arxiv.org/abs/1911.06287
https://arxiv.org/abs/2101.03606
https://github.com/wesselb/varz
https://arxiv.org/abs/2203.06997
https://github.com/wesselb/plum
https://github.com/wesselb/plum
https://doi.org/doi:10.1515/forum-2012-0152
https://doi.org/10.1515/forum-2012-0152
https://arxiv.org/abs/2109.14595
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/2202.11670
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,
M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg,
J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger,
S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi,
A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C.
Tavolato, J.-N. Thépaut, and F. Vitart (2011). “The ERA-Interim Reanalysis: Configuration
and Performance of the Data Assimilation System”. In Quarterly Journal of the Royal

Meteorological Society 137.656, pp. 553–597. doi: 10.1002/qj.828. Electronic print:
https://arxiv.org/abs/qj.828. (Cited on pages 3, 125.)

Denevi, G., D. Stamos, C. Ciliberto, and M. Pontil (2019). “Online-Within-Online Meta-
Learning”. In Advances in Neural Information Processing Systems. Vol. 32. Curran Asso-
ciates, Inc. url: https://proceedings.neurips.cc/paper_files/paper/2019/file/
e0e2b58d64fb37a2527329a5ce093d80-Paper.pdf. (Cited on page 28.)

Dubois, Y., J. Gordon, and A. Y. K. Foong (2020). Neural Process Family. url: https://
yanndubs.github.io/Neural-Process-Family/. (Cited on page 19.)

Dudley, R. M. (2002). Real Analysis and Probability. 2nd ed. Cambridge Studies in Advanced
Mathematics. Cambridge University Press. doi: 10.1017/CBO9780511755347. (Cited on
pages 16, 33.)

Dugundji, J. (1951). “An Extension of Tietze’s Theorem”. In Pacific Journal of Mathematics

1.3, pp. 353–367. (Cited on page 59.)
Durrett, R. (2010). Probability: Theory and Examples. 4th ed. Cambridge University Press.

(Cited on page 192.)
Earth Resources Observation and Science Center, U.S. Geological Survey, U.S. Department

of the Interior (1997). USGS 30 Arc-Second Global Elevation Data, GTOPO30. Research
Data Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory. url: https://doi.org/10.5065/A1Z4-EE71. (Cited
on page 125.)

Edwards, H. and A. Storkey (2017). “Towards a Neural Statistician”. In Proceedings of the 5th

International Conference on Learning Representations. Electronic print: https://arxiv.
org/abs/1606.02185. (Cited on pages 6, 8, 9, 50, 54, 147.)

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor (2016).
“Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental
Design and Organization”. In Geoscientific Model Development 9.5, pp. 1937–1958. doi:
10.5194/gmd-9-1937-2016. url: https://gmd.copernicus.org/articles/9/1937/
2016/. (Cited on page 123.)

Farid, A. and A. Majumdar (2021). “Generalization Bounds for Meta-Learning via PAC-Bayes
and Uniform Stability”. In Advances in Neural Information Processing Systems 34. Curran

152

https://doi.org/10.1002/qj.828
https://arxiv.org/abs/qj.828
https://proceedings.neurips.cc/paper_files/paper/2019/file/e0e2b58d64fb37a2527329a5ce093d80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/e0e2b58d64fb37a2527329a5ce093d80-Paper.pdf
https://yanndubs.github.io/Neural-Process-Family/
https://yanndubs.github.io/Neural-Process-Family/
https://doi.org/10.1017/CBO9780511755347
https://doi.org/10.5065/A1Z4-EE71
https://arxiv.org/abs/1606.02185
https://arxiv.org/abs/1606.02185
https://doi.org/10.5194/gmd-9-1937-2016
https://gmd.copernicus.org/articles/9/1937/2016/
https://gmd.copernicus.org/articles/9/1937/2016/

Associates, Inc. Electronic print: https://arxiv.org/abs/2102.06589. (Cited on
page 28.)

Fei-Fei, L., R. Fergus, and P. Perona (2006). “One-Shot Learning of Object Categories”. In
IEEE Transactions on Pattern Analysis and Machine Intelligence 28.4, pp. 594–611. doi:
10.1109/TPAMI.2006.79. (Cited on page 15.)

Feragen, A. (2006).Characterization of Equivariant ANEs. Licentiate thesis. (Cited on page 59.)
Finn, C., P. Abbeel, and S. Levine (2017). “Model-Agnostic Meta-Learning for Fast Adaptation

of Deep Networks”. In Proceedings of the 34th International Conference on Machine

Learning. Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 1126–1135.
(Cited on pages 2, 8.)

Finn, C. and S. Levine (2018a). “Meta-Learning and Universality: Deep Representations
and Gradient Descent Can Approximate Any Learning Algorithm”. In Proceedings of

the 6th International Conference on Learning Representations. Electronic print: https:
//arxiv.org/abs/1710.11622. (Cited on page 8.)

Finn, C., K. Xu, and S. Levine (2018b). “Probabilistic Model-Agnostic Meta-Learning”. In
Advances in Neural Information Processing Systems 31. Curran Associates, Inc. Electronic
print: https://arxiv.org/abs/1806.02817. (Cited on page 8.)

Foong, A. Y. K., W. P. Bruinsma, and D. R. Burt (2022). “A Note on the Chernoff Bound for
Random Variables in the Unit Interval”. In arXiv:2205.07880. Electronic print: https:
//arxiv.org/abs/2205.07880. (Cited on page 12.)

Foong, A. Y. K., W. P. Bruinsma, D. R. Burt, and R. E. Turner (2021). “How Tight Can PAC-
Bayes be in the Small Data Regime?” InAdvances in Neural Information Processing Systems

34. Curran Associates, Inc. Electronic print: https://arxiv.org/abs/2106.03542.
(Cited on pages 10, 146.)

Foong, A. Y. K., W. P. Bruinsma, J. Gordon, Y. Dubois, J. Requeima, and R. E. Turner (2020).
“Meta-Learning Stationary Stochastic Process Prediction With Convolutional Neural
Processes”. In Advances in Neural Information Processing Systems 33. Curran Associates,
Inc. Electronic print: https://arxiv.org/abs/2007.01332. (Cited on pages 8–10, 14,
19, 27, 89–91, 137, 143, 145, 199, 200.)

Fukushima, K. and S. Miyake (1982). “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Visual Pattern Recognition”. In Competition and Cooperation

in Neural Nets. Springer Berlin Heidelberg, pp. 267–285. (Cited on pages 1, 17, 25, 55.)
Garnelo, M., D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh,

D. J. Rezende, and S. M. A. Eslami (2018a). “Conditional Neural Processes”. In Proceedings

of the 35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine
Learning Research. PMLR. Electronic print: https://arxiv.org/abs/1807.01613.
(Cited on pages 6, 8, 9, 17, 18, 29, 38, 42, 48, 65–67, 86, 90, 91, 140, 197, 200.)

153

https://arxiv.org/abs/2102.06589
https://doi.org/10.1109/TPAMI.2006.79
https://arxiv.org/abs/1710.11622
https://arxiv.org/abs/1710.11622
https://arxiv.org/abs/1806.02817
https://arxiv.org/abs/2205.07880
https://arxiv.org/abs/2205.07880
https://arxiv.org/abs/2106.03542
https://arxiv.org/abs/2007.01332
https://arxiv.org/abs/1807.01613

Garnelo, M., J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W.
Teh (2018b). “Neural Processes”. In 35th International Conference on Machine Learning.

Theoretical Foundations and Applications of Deep Generative Models Workshop. Electronic
print: https://arxiv.org/abs/1807.01622. (Cited on pages 6, 17, 19, 48, 80, 86, 87, 90,
91, 137, 140, 141, 146, 147, 197, 200.)

Gleason, A. M. (1950). “Spaces With a Compact Lie Group Of Transformations”. In Pro-

ceedings of the American Mathematical Society 1.1, pp. 35–43. issn: 0002-9939. doi:
10.2307/2032430. (Cited on page 59.)

Gordon, J. (2020). “Advances in Probabilistic Meta-Learning and the Neural Process Family”.
PhD thesis. Department of Engineering, University of Cambridge. (Cited on pages 8, 9,
19, 64.)

Gordon, J., J. Bronskill, M. Bauer, S. Nowozin, and R. E. Turner (2019). “Meta-Learning
Probabilistic Inference for Prediction”. In Proceedings of the 7th International Conference

on Learning Representations. Electronic print: https://arxiv.org/abs/1805.09921.
(Cited on pages 8, 18.)

Gordon, J., W. P. Bruinsma, A. Y. K. Foong, J. Requeima, Y. Dubois, and R. E. Turner (2020).
“Convolutional Conditional Neural Processes”. In Proceedings of the 8th International

Conference on Learning Representations. Electronic print: https://arxiv.org/abs/1910.
13556. (Cited on pages 8, 9, 11, 18, 25, 50, 59, 65, 89, 145.)

Grant, E., C. Finn, S. Levine, T. Darrell, and T. Griffiths (2018). “Recasting Gradient-Based
Meta-Learning as Hierarchical Bayes”. In Proceedings of the 6th International Conference

on Learning Representations. Electronic print: https://arxiv.org/abs/1801.08930.
(Cited on page 2.)

Gray, R. M. (2011). Entropy and Information Theory. 2nd ed. Springer Publishing Company,
Incorporated. (Cited on page 36.)

Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger (2017). “On Calibration of Modern Neural
Networks”. In Proceedings of the 34th International Conference on Machine Learning.
Vol. 70. Proceedings of Machine Learning Research. PMLR. Electronic print: https:
//arxiv.org/abs/1706.04599. (Cited on page 133.)

Gutiérrez, J. M., D. Maraun, M. Widmann, R. Huth, E. Hertig, R. Benestad, O. Roessler,
J. Wibig, R. Wilcke, S. Kotlarski, D. S. Martín, S. Herrera, J. Bedia, A. Casanueva, R.
Manzanas, M. Iturbide, M. Vrac, M. Dubrovsky, J. Ribalaygua, J. Pórtoles, O. Räty, J.
Räisänen, B. Hingray, D. Raynaud, M. J. Casado, P. Ramos, T. Zerenner, M. Turco,
T. Bosshard, P. Štěpánek, J. Bartholy, R. Pongracz, D. E. Keller, A. M. Fischer, R. M.
Cardoso, P. M. M. Soares, B. Czernecki, and C. Pagé (2019). “An Intercomparison of
a Large Ensemble of Statistical Downscaling Methods Over Europe: Results From the
VALUE Perfect Predictor Cross-Validation Experiment”. In International Journal of

154

https://arxiv.org/abs/1807.01622
https://doi.org/10.2307/2032430
https://arxiv.org/abs/1805.09921
https://arxiv.org/abs/1910.13556
https://arxiv.org/abs/1910.13556
https://arxiv.org/abs/1801.08930
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599

Climatology 39.9, pp. 3750–3785. doi: 10.1002/joc.5462. Electronic print: https:
//arxiv.org/abs/joc.5462. (Cited on pages 127, 133.)

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Electronic print: https://arxiv.org/abs/1512.03385. (Cited on pages 126, 202.)

Hochreiter, S., A. S. Younger, and P. R. Conwell (2001). “Learning to Learn Using Gradient
Descent”. In International Conference on Artificial Neural Networks 2001. Springer Berlin
Heidelberg, pp. 87–94. (Cited on page 7.)

Holderrieth, P., M. Hutchinson, and Y. W. Teh (2021). “Equivariant Learning of Stochastic
Fields: Gaussian Processes And Steerable Conditional Neural Processes”. In Proceedings of
the 38th International Conference on Machine Learning. Vol. 139. Proceedings of Machine
Learning Research. PMLR. Electronic print: https://arxiv.org/abs/2011.12916.
(Cited on pages 18, 145.)

Hron, J. andW. P. Bruinsma (2020). Solutions for High-Dimensional Statistics: A Non-Symptotic

Viewpoint by Martin J. Wainwright. url: https://high-dimensional-statistics.
github.io/. (Cited on page 12.)

Hundley, D. R. (2022). Introduction to Mathematical Modelling. url: http://people.whitman.
edu / ~hundledr / courses / M250F03 / M250 . html. (Visited on 25/06/2022.) (Cited on
page 115.)

Ivakhnenko, A. G. and V. G. Lapa (1965). Cybernetic Predicting Devices. CCM Information
Corporation. (Cited on pages 1, 17.)

Jaworowski, J. W. (1981). “An Equivariant Extension Theorem and G-Retracts With a Finite
Structure”. In Manuscripta Mathematica 35, pp. 323–329. (Cited on page 59.)

Jose, S. T. and O. Simeone (2021). “Information-Theoretic Generalization Bounds for Meta-
Learning and Applications”. In Entropy 23.1. issn: 1099-4300. doi: 10.3390/e23010126.
Electronic print: https://arxiv.org/abs/2005.04372. url: https://www.mdpi.com/
1099-4300/23/1/126. (Cited on page 28.)

Kawano, M., W. Kumagai, A. Sannai, Y. Iwasawa, and Y. Matsuo (2021). “Group Equivariant
Conditional Neural Processes”. In Proceedings of the 9th International Conference on

Learning Representations. url: https://openreview.net/forum?id=e8W-hsu_q5. (Cited
on pages 18, 145.)

Khodak, M., M.-F. Balcan, and A. Talwalkar (2019). “Provable Guarantees for Gradient-
Based Meta-Learning”. In Proceedings of the 36th International Conference on Machine

Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR. Electronic print:
https://arxiv.org/abs/1902.10644. (Cited on page 28.)

Kim, H., A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y.W. Teh
(2019). “Attentive Neural Processes”. In Proceedings of the 7th International Conference

155

https://doi.org/10.1002/joc.5462
https://arxiv.org/abs/joc.5462
https://arxiv.org/abs/joc.5462
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2011.12916
https://high-dimensional-statistics.github.io/
https://high-dimensional-statistics.github.io/
http://people.whitman.edu/~hundledr/courses/M250F03/M250.html
http://people.whitman.edu/~hundledr/courses/M250F03/M250.html
https://doi.org/10.3390/e23010126
https://arxiv.org/abs/2005.04372
https://www.mdpi.com/1099-4300/23/1/126
https://www.mdpi.com/1099-4300/23/1/126
https://openreview.net/forum?id=e8W-hsu_q5
https://arxiv.org/abs/1902.10644

on Learning Representations. Electronic print: https://arxiv.org/abs/1901.05761.
(Cited on pages 18, 19, 90, 91, 142, 147, 198.)

Kingma, D. P. and J. Ba (2015). “ADAM: A Method for Stochastic Optimization”. In Proceed-

ings of the 3rd International Conference on Learning Representations. Electronic print:
https://arxiv.org/abs/1412.6980. (Cited on page 200.)

Kingma, D. P. and M. Welling (2013). “Auto-Encoding Variational Bayes”. In arXiv:1312.6114.
Electronic print: https://arxiv.org/abs/1312.6114. (Cited on page 78.)

Kondor, R. and S. Trivedi (2018). “On the Generalization of Equivariance and Convolution
in Neural Networks to the Action of Compact Groups”. In arXiv:1802.03690. Electronic
print: https://arxiv.org/abs/1802.03690. (Cited on page 56.)

Korshunova, I., J. Degrave, F. Huszár, Y. Gal, A. Gretton, and J. Dambre (2018). “BRUNO:
A Deep Recurrent Model for Exchangeable Data”. In Advances in Neural Information

Processing Systems 31. Curran Associates, Inc. Electronic print: https://arxiv.org/
abs/1802.07535. (Cited on page 21.)

Korshunova, I., Y. Gal, A. Gretton, and J. Dambre (2020). “Conditional BRUNO: A Neural
Process for Exchangeable Labelled Data”. In Neurocomputing 416, pp. 305–309. issn:
0925-2312. doi: 10.1016/j.neucom.2019.11.108. url: https://www.sciencedirect.
com/science/article/pii/S0925231220304987. (Cited on page 21.)

Lake, B. M., R. Salakhutdinov, and J. B. Tenenbaum (2015). “Human-Level Concept Learning
Through Probabilistic Program Induction”. In Science 350.6266, pp. 1332–1338. doi:
10.1126/science.aab3050. url: https://www.science.org/doi/abs/10.1126/
science.aab3050. (Cited on pages 2, 15.)

Lake, B. M., T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman (2017). “Building Machines
That Learn and Think Like People”. In Behavioral and Brain Sciences 40. doi: 10.1017/
S0140525X16001837. (Cited on page 2.)

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel
(1989). “Backpropagation Applied to Handwritten Zip Code Recognition”. In Neural

Computation 1.4, pp. 541–551. doi: 10.1162/neco.1989.1.4.541. (Cited on pages 1, 17,
25.)

Liu, T., J. Lu, Z. Yan, and G. Zhang (2021). “PAC-Bayes Bounds for Meta-Learning With
Data-Dependent Prior”. In arXiv:2102.03748. Electronic print: https://arxiv.org/abs/
2102.03748. (Cited on page 28.)

Liu, Y., A. R. Ganguly, and J. Dy (2020). “Climate Downscaling Using YNet: A Deep Convo-
lutional Network With Skip Connections and Fusion”. In Proceedings of the 26rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. Association
for Computing Machinery. doi: 10.1145/3394486.3403366. (Cited on page 124.)

156

https://arxiv.org/abs/1901.05761
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1802.03690
https://arxiv.org/abs/1802.07535
https://arxiv.org/abs/1802.07535
https://doi.org/10.1016/j.neucom.2019.11.108
https://www.sciencedirect.com/science/article/pii/S0925231220304987
https://www.sciencedirect.com/science/article/pii/S0925231220304987
https://doi.org/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/2102.03748
https://arxiv.org/abs/2102.03748
https://doi.org/10.1145/3394486.3403366

Lotka, A. J. (1910). “Contribution to the Theory of Periodic Reactions”. In The Journal of

Physical Chemistry 14.3, pp. 271–274. issn: 0092-7325. doi: 10.1021/j150111a004. url:
https://doi.org/10.1021/j150111a004. (Cited on page 116.)

Louizos, C., X. Shi, K. Schutte, and M. Welling (2019). “The Functional Neural Process”. In
Advances in Neural Information Processing Systems 32. Curran Associates, Inc. Electronic
print: https://arxiv.org/abs/1906.08324. (Cited on page 19.)

Luo, W., Y. Li, R. Urtasun, and R. Zemel (2016). “Understanding the Effective Receptive Field
in Deep Convolutional Neural Networks”. In Advances in Neural Information Processing

Systems 29. Curran Associates, Inc. Electronic print: https://arxiv.org/abs/1701.
04128. (Cited on pages 71, 73.)

Ma, C., Y. Li, and J. M. Hernández-Lobato (2018). “Variational Implicit Processes”. InAdvances
in Neural Information Processing Systems 31. Bayesian Deep Learning Workshop. (Cited
on page 41.)

MacLulich, D. A. (1937). Fluctuations in the Numbers of the Varying Hare (Lepus Americanus).
University of Toronto Press. doi: 10.3138/9781487583064. (Cited on pages 115, 132.)

Maraun, D., F. Wetterhall, A. M. Ireson, R. E. Chandler, E. J. Kendon, M.Widmann, S. Brienen,
H. W. Rust, T. Sauter, M. Themeßl, V. K. C. Venema, K. P. Chun, C. M. Goodess, R. G.
Jones, C. Onof, M. Vrac, and I. Thiele-Eich (2010). “Precipitation Downscaling Under
Climate Change: Recent Developments to Bridge the Gap Between Dynamical Models
and the End User”. In Reviews of Geophysics 48.3. doi: 10.1029/2009RG000314. Electronic
print: https://arxiv.org/abs/RG000314. (Cited on page 127.)

Maraun, D., T. G. Shepherd, M.Widmann, G. Zappa, D.Walton, J. M. Gutiérrez, S. Hagemann,
I. Richter, P. M. M. Soares, A. Hall, and L. O. Mearns (2017). “Towards Process-Informed
Bias Correction of Climate Change Simulations”. In Nature Climate Change 7.11, pp. 764–
773. issn: 1758-6798. doi: 10.1038/nclimate3418. (Cited on page 123.)

Maraun, D. and M. Widmann (2018). Statistical Downscaling and Bias Correction for Climate

Research. Cambridge Uiversity Press. doi: 10.1017/9781107588783. (Cited on pages 3,
9, 91, 123.)

Maraun, D., M. Widmann, J. M. Gutiérrez, S. Kotlarski, R. E. Chandler, E. Hertig, J. Wibig,
R. Huth, and R. A. I. Wilcke (2015). “VALUE: A Framework to Validate Downscaling
Approaches for Climate Change Studies”. In Earth’s Future 3.1, pp. 1–14. doi: 10.1002/
2014EF000259. Electronic print: https://arxiv.org/abs/EF000259. url: https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259. (Cited on
pages 124, 127, 131, 133.)

Markou, S., J. Requeima, W. P. Bruinsma, and R. E. Turner (2021). “Efficient Gaussian
Neural Processes for Regression”. In 39th International Conference on Machine Learning.

Workshop on Uncertainty & Robustness in Deep Learning. Electronic print: https://
arxiv.org/abs/2108.09676. (Cited on page 11.)

157

https://doi.org/10.1021/j150111a004
https://doi.org/10.1021/j150111a004
https://arxiv.org/abs/1906.08324
https://arxiv.org/abs/1701.04128
https://arxiv.org/abs/1701.04128
https://doi.org/10.3138/9781487583064
https://doi.org/10.1029/2009RG000314
https://arxiv.org/abs/RG000314
https://doi.org/10.1038/nclimate3418
https://doi.org/10.1017/9781107588783
https://doi.org/10.1002/2014EF000259
https://doi.org/10.1002/2014EF000259
https://arxiv.org/abs/EF000259
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259
https://arxiv.org/abs/2108.09676
https://arxiv.org/abs/2108.09676

Markou, S., J. Requeima, W. P. Bruinsma, A. Vaughan, and R. E. Turner (2022). “Practical
Conditional Neural Processes Via Tractable Dependent Predictions”. In Proceedings of

the 10th International Conference on Learning Representations. Electronic print: https:
//arxiv.org/abs/2203.08775. (Cited on pages 8–10, 19, 25, 65, 89, 146.)

Maurer, A. (2005). “Algorithmic Stability andMeta-Learning”. In Journal of Machine Learning

Research 6.33, pp. 967–994. url: http://jmlr.org/papers/v6/maurer05a.html. (Cited
on page 28.)

McCulloch, W. and W. Pitts (1943). “A Logical Calculus of Ideas Immanent in Nervous
Activity”. In Bulletin of Mathematical Biophysics 5, pp. 127–147. (Cited on pages 1, 17.)

Misra, S., S. Sarkar, and P. Mitra (2018). “Statistical Downscaling of Precipitation Using
Long Short-Term Memory Recurrent Neural Networks”. In Theoretical and Applied

Climatology 134.3, pp. 1179–1196. issn: 1434-4483. doi: 10.1007/s00704-017-2307-2.
(Cited on page 123.)

Munkres, J. R. (2000). 2nd ed. Pearson. (Cited on pages 43, 54, 58, 183, 185.)
Nadaraya, E. A. (1964). “On Estimating Regression”. In Theory of Probability & Its Applications

9.1, pp. 141–142. doi: 10.1137/1109020. (Cited on page 70.)
Noether, E. (1918). “Invariante Variationsprobleme”. In Nachrichten Von Der Gesellschaft Der

Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse, pp. 235–257. (Cited on
page 7.)

Norris, J. (2018). Advanced Probability. University of Cambridge. url: http://www.statslab.
cam.ac.uk/~james/Lectures/ap.pdf. (Cited on pages 34, 177.)

Pan, B., K. Hsu, A. AghaKouchak, and S. Sorooshian (2019). “Improving Precipitation Estim-
ation Using Convolutional Neural Network”. InWater Resources Research 55.3, pp. 2301–
2321. doi: 10.1029/2018WR024090. Electronic print: https://arxiv.org/abs/WR024090.
(Cited on page 124.)

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S.
Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala (2019). “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”. In Advances in Neural Information

Processing Systems 32. Curran Associates, Inc., pp. 8024–8035. url: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf. (Cited on page 136.)
Pentina, A. and C. Lampert (2014). “A PAC-Bayesian Bound for Lifelong Learning”. In

Proceedings of the 31th International Conference on Machine Learning. Vol. 32. Proceedings
of Machine Learning Research. PMLR. url: http://proceedings.mlr.press/v32/
pentina14.html. (Cited on page 28.)

Petersen, J., G. Köhler, D. Zimmerer, F. Isensee, P. F. Jäger, and K. H. Maier-Hein (2021).
“GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on

158

https://arxiv.org/abs/2203.08775
https://arxiv.org/abs/2203.08775
http://jmlr.org/papers/v6/maurer05a.html
https://doi.org/10.1007/s00704-017-2307-2
https://doi.org/10.1137/1109020
http://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf
http://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf
https://doi.org/10.1029/2018WR024090
https://arxiv.org/abs/WR024090
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://proceedings.mlr.press/v32/pentina14.html
http://proceedings.mlr.press/v32/pentina14.html

Time Series Data”. In 37th Conference on Uncertainty in Artificial Intelligence. Electronic
print: https://arxiv.org/abs/2106.04967. (Cited on page 145.)

Pondaven, A., M. Bakler, D. Guo, H. Hashim, M. Ignatov, and H. Zhu (2022). “Convolutional
Neural Processes for Inpainting Satellite Images”. In arXiv:2205.12407. Electronic print:
https://arxiv.org/abs/2205.12407. (Cited on page 145.)

Posner, E. C. (1975). “Random Coding Strategies for Minimum Entropy”. In IEEE Transactions
on Information Theory 21.4. issn: 0018-9448. doi: 10.1109/TIT.1975.1055416. (Cited
on pages 166, 167.)

Qi, C. R., H. Su, K. Mo, and L. J. Guibas (2017). “PointNet: Deep Learning on Point Sets for 3D
Classification And Segmentation”. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. Electronic print: https://arxiv.org/abs/1612.00593.
(Cited on pages 53, 54, 71.)

Ravi, S. and H. Larochelle (2017). “Optimization as a Model for Few-Shot Learning”. In
Proceedings of the 5th International Conference on Learning Representations. (Cited on
pages 8, 15.)

Rawat, A., J. Requeima, W. Bruinsma, and R. Turner (2022). “Challenges and Pitfalls of
Bayesian Unlearning”. In 40th International Conference on Machine Learning. Workshop

on Updatable Machine Learning. Electronic print: https://arxiv.org/abs/2207.03227.
(Cited on page 11.)

Requeima, J., J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner (2019a). “Fast and Flexible
Multi-Task Classification Using Conditional Neural Adaptive Processes”. In Advances

in Neural Information Processing Systems 32. Curran Associates, Inc. Electronic print:
https://arxiv.org/abs/1906.07697. (Cited on page 8.)

Requeima, J., W. Tebbutt, W. P. Bruinsma, and R. E. Turner (2019b). “The Gaussian Pro-
cess Autoregressive Regression Model (GPAR)”. In Proceedings of the 22nd International

Conference on Artificial Intelligence and Statistics. Vol. 89. Proceedings of Machine Learn-
ing Research. PMLR, pp. 1860–1869. url: http : / / proceedings . mlr . press / v89 /
requeima19a.html. (Cited on page 11.)

Rezazadeh, A., S. T. Jose, G. Durisi, and O. Simeone (2021). “Conditional Mutual Information-
Based Generalization Bound forMeta Learning”. In 2021 IEEE International Symposium on

Information Theory, pp. 1176–1181. doi: 10.1109/ISIT45174.2021.9518020. Electronic
print: https://arxiv.org/abs/2010.10886. (Cited on page 28.)

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-Net: Convolutional Networks for Bio-
medical Image Segmentation”. In Medical Image Computing and Computer-Assisted

Intervention. Springer International Publishing, pp. 234–241. (Cited on pages 91, 147,
199, 202.)

159

https://arxiv.org/abs/2106.04967
https://arxiv.org/abs/2205.12407
https://doi.org/10.1109/TIT.1975.1055416
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/2207.03227
https://arxiv.org/abs/1906.07697
http://proceedings.mlr.press/v89/requeima19a.html
http://proceedings.mlr.press/v89/requeima19a.html
https://doi.org/10.1109/ISIT45174.2021.9518020
https://arxiv.org/abs/2010.10886

Rosenblatt, F. (1958). “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain”. In Psychological Review 65.6, pp. 386–408. issn: 0033-295X.
doi: 10.1037/h0042519. (Cited on pages 1, 17.)

Rossum, G. van (1995). Python Tutorial. Tech. rep. CS-R9526. (Cited on page 136.)
Rothfuss, J., V. Fortuin, M. Josifoski, and A. Krause (2021). “PACOH: Bayes-Optimal Meta-

Learning With PAC-Guarantees”. In Proceedings of the 38th International Conference on

Machine Learning. Vol. 139. Proceedings ofMachine Learning Research. PMLR. Electronic
print: https://arxiv.org/abs/2002.05551. (Cited on page 28.)

Rudin, W. (1976). Principles of Mathematical Analysis. 3rd ed. McGraw-Hill, p. 342. (Cited on
page 44.)

Rudin, W. (1991). Functional Analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill. (Cited on page 43.)

Sachindra, D. A., K. Ahmed, M. M. Rashid, S. Shahid, and B. J. C. Perera (2018). “Statistical
Downscaling of Precipitation Using Machine Learning Techniques”. In Atmospheric

Research 212, pp. 240–258. issn: 0169-8095. doi: 10.1016/j.atmosres.2018.05.022.
url: https://www.sciencedirect.com/science/article/pii/S0169809517310141.
(Cited on page 123.)

Satorras, V. G., E. Hoogeboom, and M. Welling (2021). “E(n) Equivariant Graph Neural
Networks”. In Proceedings of the 38th International Conference on Machine Learning.
Vol. 139. Proceedings of Machine Learning Research. PMLR. Electronic print: https:
//arxiv.org/abs/2102.09844. (Cited on page 71.)

Schilling, R. L. (2005). Measures, Integrals and Martingales. Cambridge University Press. doi:
10.1017/CBO9780511810886. (Cited on page 188.)

Schmidhuber, J. (1987). “Evolutionary Principles in Self-Referential Learning”. Diploma
Thesis. Technische Universität München. (Cited on pages 2, 7.)

Schmidhuber, J. (1991). “A Possibility for Implementing Curiosity and Boredom in Model-
Building Neural Controllers”. In. From Animals to Animats: Proceedings of the First

International Conference on Simulation of Adaptive Behavior. MIT Press, pp. 222–227.
(Cited on page 8.)

Schmidhuber, J. (1992). “Learning to Control Fast-Weight Memories: An Alternative to
Dynamic Recurrent Networks”. In Neural Computation 4.1, pp. 131–139. doi: 10.1162/
neco.1992.4.1.131. (Cited on page 7.)

Schmidhuber, J. (1993). “A Neural Network That Embeds Its Own Meta-Levels”. In IEEE

International Conference on Neural Networks. Vol. 1, pp. 407–412. doi: 10.1109/ICNN.
1993.298591. (Cited on page 7.)

Schütt, K. T., P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller
(2017). “SchNet: A Continuous-Filter Convolutional Neural Network for Modeling
Quantum Interactions”. In Advances in Neural Information Processing Systems 30. Curran

160

https://doi.org/10.1037/h0042519
https://arxiv.org/abs/2002.05551
https://doi.org/10.1016/j.atmosres.2018.05.022
https://www.sciencedirect.com/science/article/pii/S0169809517310141
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2102.09844
https://doi.org/10.1017/CBO9780511810886
https://doi.org/10.1162/neco.1992.4.1.131
https://doi.org/10.1162/neco.1992.4.1.131
https://doi.org/10.1109/ICNN.1993.298591
https://doi.org/10.1109/ICNN.1993.298591

Associates, Inc. Electronic print: https://arxiv.org/abs/1706.08566. (Cited on
page 71.)

Sherrington, C. S. (1906). “Observations on the Scratch-Reflex in the Spinal Dog”. In The

Journal of Physiology 34.1, pp. 1–50. issn: 0022-3751. doi: 10.1113/jphysiol.1906.
sp001139. (Cited on page 71.)

Shysheya, A. (2020). “Neural Models for Non-Uniformly Sampled Data”. MA thesis. Depart-
ment of Engineering, University of Cambridge. (Cited on page 145.)

Singh, A., A. Albert, and B. White (2019). “Downscaling Numerical Weather Models with
GANs”. In Proceedings of the 9th International Workshop on Climate Informatics. (Cited
on page 124.)

Singh, G., J. Yoon, Y. Son, and S. Ahn (2019). “Sequential Neural Processes”. In Advances

in Neural Information Processing Systems 32. Curran Associates, Inc. Electronic print:
https://arxiv.org/abs/1906.10264. (Cited on page 19.)

Smith, L. N. (2017). “Cyclical Learning Rates for Training Neural Networks”. In IEEE Winter

Conference on Applications of Computer Vision 2017, pp. 464–472. doi: 10.1109/WACV.
2017.58. (Cited on page 134.)

Snell, J., K. Swersky, and R. S. Zemel (2017). “Prototypical Networks for Few-Shot Learn-
ing”. In Advances in Neural Information Processing Systems 30. Curran Associates, Inc.
Electronic print: https://arxiv.org/abs/1703.05175. (Cited on page 8.)

Stevens, W. P., G. J. Myers, and L. L. Constantine (1974). “Structured Design”. In IBM Systems

Journal 13.2, pp. 115–139. doi: 10.1147/sj.132.0115. (Cited on page 135.)
Stocker, T. F., D. Qin, G.-K. Plattner, M. M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y.

Xia, V. Bex, and P. M. Midgley (2013). Climate Change 2013: The Physical Science Basis.

Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change. Tech. rep. Cambridge University Press. (Cited on page 123.)
Tank, A. M. G. K., J. B. Wijngaard, G. P. Können, R. Böhm, G. Demarée, A. Gocheva, M.

Mileta, S. Pashiardis, L. Hejkrlik, C. Kern-Hansen, R. Heino, P. Bessemoulin, G. Müller-
Westermeier, M. Tzanakou, S. Szalai, T. Pálsdóttir, D. Fitzgerald, S. Rubin, M. Capaldo, M.
Maugeri, A. Leitass, A. Bukantis, R. Aberfeld, A. F. V. van Engelen, E. Forland, M. Mietus,
F. Coelho, C. Mares, V. Razuvaev, E. Nieplova, T. Cegnar, J. A. López, B. Dahlström, A.
Moberg, W. Kirchhofer, A. Ceylan, O. Pachaliuk, L. V. Alexander, and P. Petrovic (2002).
“Daily Dataset of 20th-Century Surface Air Temperature and Precipitation Series for the
European Climate Assessment”. In International Journal of Climatology 22.12, pp. 1441–
1453. doi: 10.1002/joc.773. Electronic print: https://arxiv.org/abs/joc.773. url:
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.773. (Cited on
page 126.)

Tebbutt, W., W. P. Bruinsma, F. C. White, M. Zgubic, A. Arslan, S. Axen, R. Luo, S. Schaub,
N. Robinson, B. Richard, D. Widmann, C. Vogt, and V. B. Shah (2022). FiniteDiffer-

161

https://arxiv.org/abs/1706.08566
https://doi.org/10.1113/jphysiol.1906.sp001139
https://doi.org/10.1113/jphysiol.1906.sp001139
https://arxiv.org/abs/1906.10264
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://arxiv.org/abs/1703.05175
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1002/joc.773
https://arxiv.org/abs/joc.773
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.773

ences.jl: High Accuracy Derivatives, Estimated via Numerical Finite Differences. Julia
package, registered as FiniteDifferences. url: https://github.com/JuliaDiff/
FiniteDifferences.jl. (Visited on 01/06/2022.) (Cited on page 13.)

Thrun, S. and L. Pratt (1998). Learning to Learn. Springer Science & Business Media. (Cited
on pages 2, 8.)

Titsias, M. K. (2009). “Variational Learning of Inducing Variables in Sparse Gaussian Pro-
cesses”. In Proceedings of the 12th International Conference on Artificial Intelligence

and Statistics. Vol. 12. Proceedings of Machine Learning Research. PMLR, pp. 567–574.
url: http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf. (Cited on
page 193.)

Tomani, C., S. Gruber, M. E. Erdem, D. Cremers, and F. Buettner (2021). “Post-Hoc Uncer-
tainty Calibration for Domain Drift Scenarios”. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Electronic print: https://arxiv.org/abs/
2012.10988. (Cited on page 133.)

Vaart, A. W. van der (1998). Asymptotic Statistics. Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press. doi: 10.1017/CBO9780511802256.
(Cited on pages 45, 177.)

Vandal, T., E. Kodra, J. Dy, S. Ganguly, R. Nemani, and A. R. Ganguly (2018). “Quantifying
Uncertainty in Discrete-Continuous and Skewed Data With Bayesian Deep Learning”.
In Proceedings of the 24rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. Association for Computing Machinery. Electronic print: https://
arxiv.org/abs/1802.04742. (Cited on page 124.)

Vandal, T., E. Kodra, and A. R. Ganguly (2019). “Intercomparison of Machine Learning
Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation”. In
Theoretical and Applied Climatology 137.1, pp. 557–570. issn: 1434-4483. doi: 10.1007/
s00704-018-2613-3. url: https://doi.org/10.1007/s00704-018-2613-3. (Cited on
page 124.)

Vandal, T., E. Kodra, S. Ganguly, A. Michaelis, R. Nemani, and A. R. Ganguly (2017). “DeepSD:
Generating High Resolution Climate Change Projections Through Single Image Super-
Resolution”. In Proceedings of the 23rd ACM SIGKDD International Conference on Know-

ledge Discovery and Data Mining. Association for Computing Machinery. Electronic
print: https://arxiv.org/abs/1703.03126. (Cited on page 123.)

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin (2017). “Attention Is All You Need”. In Advances in Neural Information

Processing Systems 30. Curran Associates, Inc. Electronic print: https://arxiv.org/
abs/1706.03762. (Cited on pages 147, 198.)

162

https://github.com/JuliaDiff/FiniteDifferences.jl
https://github.com/JuliaDiff/FiniteDifferences.jl
http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf
https://arxiv.org/abs/2012.10988
https://arxiv.org/abs/2012.10988
https://doi.org/10.1017/CBO9780511802256
https://arxiv.org/abs/1802.04742
https://arxiv.org/abs/1802.04742
https://doi.org/10.1007/s00704-018-2613-3
https://doi.org/10.1007/s00704-018-2613-3
https://doi.org/10.1007/s00704-018-2613-3
https://arxiv.org/abs/1703.03126
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Vaughan, A., N. D. Lane, and M. Herzog (2021). “Multivariate Climate Downscaling with
Latent Neural Processes”. In 39th International Conference onMachine Learning.Workshop

on Tackling Climate Change with Machine Learning. (Cited on page 145.)
Vaughan, A., W. Tebbutt, J. S. Hosking, and R. E. Turner (2022). “Convolutional Conditional

Neural Processes for Local Climate Downscaling”. In Geoscientific Model Development

15.1, pp. 251–268. doi: 10.5194/gmd-15-251-2022. url: https://gmd.copernicus.
org/articles/15/251/2022/. (Cited on pages 9, 124–126, 133, 145, 202.)

Vinyals, O., C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra (2016). “Matching
Networks for One Shot Learning”. In Advances in Neural Information Processing Systems

29. Curran Associates, Inc. Electronic print: https://arxiv.org/abs/1606.04080.
(Cited on pages 8, 15.)

Volterra, V. (1926). “Variazioni e Fluttuazioni del Numero d’Individui in Specie Animali
Conviventi”. InMemoria della Reale Accademia Nazionale dei Lincei 2, pp. 31–113. (Cited
on page 116.)

Wagstaff, E., F. B. Fuchs, M. Engelcke, I. Posner, and M. Osborne (2019). “On the Limitations
of Representing Functions on Sets”. In Proceedings of the 36th International Conference on

Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR. Electronic
print: https://arxiv.org/abs/1901.09006. (Cited on pages 9, 50, 51, 54, 63, 147.)

Wainwright, M. J. and M. I. Jordan (2008). “Graphical Models, Exponential Families, and
Variational Inference”. In Foundations and Trends in Machine Learning 1.1, pp. 1–305. issn:
1935-8237. doi: 10.1561/2200000001. url: http://dx.doi.org/10.1561/2200000001.
(Cited on page 17.)

Wald, A. (1949). “Note on the Consistency of the Maximum Likelihood Estimate”. In The

Annals of Mathematical Statistics 20.4, pp. 595–601. doi: 10.1214/aoms/1177729952.
url: https://doi.org/10.1214/aoms/1177729952. (Cited on pages 43, 45.)

Wang, X., L. Yao, X. Wang, H.-Y. Paik, and S. Wang (2021). “Global Convolutional Neural
Processes”. In Proceedings of the IEEE International Conference on Data Mining, pp. 699–
708. doi: 10.1109/ICDM51629.2021.00081. (Cited on page 145.)

Watson, G. S. (1964). “Smooth Regression Analysis”. In Sankhyā: The Indian Journal of

Statistics, Series A 26.4, pp. 359–372. issn: 0581572X. (Cited on page 70.)
Werbos, P. J. (1982). “Applications of Advances in Nonlinear Sensitivity Analysis”. In Pro-

ceedings of the 10th IFIP Conference, pp. 762–770. (Cited on pages 1, 17.)
Wilk, M. van der, M. Bauer, S. John, and J. Hensman (2018). “Learning Invariances Using the

Marginal Likelihood”. In Advances in Neural Information Processing Systems 31. Curran
Associates, Inc. Electronic print: https://arxiv.org/abs/1808.05563. (Cited on
page 64.)

163

https://doi.org/10.5194/gmd-15-251-2022
https://gmd.copernicus.org/articles/15/251/2022/
https://gmd.copernicus.org/articles/15/251/2022/
https://arxiv.org/abs/1606.04080
https://arxiv.org/abs/1901.09006
https://doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
https://doi.org/10.1214/aoms/1177729952
https://doi.org/10.1214/aoms/1177729952
https://doi.org/10.1109/ICDM51629.2021.00081
https://arxiv.org/abs/1808.05563

Wu, W., Z. Qi, and L. Fuxin (2019). “PointConv: Deep Convolutional Networks on 3D Point
Clouds”. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 9613–9622. doi: 10.1109/CVPR.2019.00985. (Cited on page 71.)
Xia, R., W. P. Bruinsma, W. Tebbutt, and R. E. Turner (2021). “The Gaussian Process Latent

Autoregressive Model”. In Proceedings of the 3rd Symposium on Advances in Approximate

Bayesian Inference. url: https://openreview.net/forum?id=kvq3WKXvwQ_. (Cited on
page 11.)

Xu, J., J.-F. Ton, H. Kim, A. R. Kosiorek, and Y. W. Teh (2020). “MetaFun: Meta-Learning
With Iterative Functional Updates”. In Proceedings of the 37th International Conference on

Machine Learning. Vol. 119. Proceedings ofMachine Learning Research. PMLR. Electronic
print: https://arxiv.org/abs/1912.02738. (Cited on page 59.)

Yarotsky, D. (2022). “Universal Approximations of Invariant Maps by Neural Networks”. In
Constructive Approximation 55.1, pp. 407–474. issn: 1432-0940. doi: 10.1007/s00365-
021-09546-1. Electronic print: https://arxiv.org/abs/1804.10306. url: https:
//doi.org/10.1007/s00365-021-09546-1. (Cited on pages 59, 70.)

Yin, M., G. Tucker, M. Zhou, S. Levine, and C. Finn (2020). “Meta-Learning Without Memor-
ization”. In Proceedings of the 8th International Conference on Learning Representations.
Electronic print: https://arxiv.org/abs/1912.03820. (Cited on page 28.)

Younger, A. S., S. Hochreiter, and P. R. Conwell (2001). “Meta-Learning With Backpropaga-
tion”. In International Joint Conference on Neural Networks 2001. Vol. 3, pp. 2001–2006.
doi: 10.1109/IJCNN.2001.938471. (Cited on page 8.)

Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola (2017).
“Deep Sets”. In Advances in Neural Information Processing Systems 30. Curran Associates,
Inc. Electronic print: https://arxiv.org/abs/1703.06114. (Cited on pages 6, 9, 50, 51,
53, 54, 63, 147, 182, 185.)

Zhang, X. L., H. Begleiter, B. Porjesz, W. Wang, and A. Litke (1995). “Event Related Potentials
During Object Recognition Tasks”. In Brain Research Bulletin 38.6, pp. 531–538. (Cited
on pages 3, 91, 120.)

164

https://doi.org/10.1109/CVPR.2019.00985
https://openreview.net/forum?id=kvq3WKXvwQ_
https://arxiv.org/abs/1912.02738
https://doi.org/10.1007/s00365-021-09546-1
https://doi.org/10.1007/s00365-021-09546-1
https://arxiv.org/abs/1804.10306
https://doi.org/10.1007/s00365-021-09546-1
https://doi.org/10.1007/s00365-021-09546-1
https://arxiv.org/abs/1912.03820
https://doi.org/10.1109/IJCNN.2001.938471
https://arxiv.org/abs/1703.06114

A | Proofs for Chapter 3

A.1 Proofs for Section 3.1

Recall the definition of the posterior prediction map in Definition 3.6. Henceforth, for all
D ∈ D, denote the Radon–Nikodym derivative of πf (D) with respect to µf by π′(D):

π′(D) =
r(y − f(x))
Z(x,y)

(A.1)

where D = (x,y), r(x) = exp(− 1
2σ2

f
∥x∥22), and Z(x,y) = Ef [r(y − f(x))].

Lemma A.1. Let (Di)i≥1 ⊆ D be a bounded sequence and denote Di = (xi,yi). Then

0 < inf
i≥1

Z(xi,yi) ≤ sup
i≥1

Z(xi,yi) <∞. (A.2)

Proof. That the supremum is finite follows from that r(x) ≤ 1. For the infimum, letM > 0,
and consider the event A = {f : ∥f(xi)∥∞ ≤M}. Then

Ef [e
− 1
2σ2

f
∥yi−f(xi)∥22

] ≥ Ef [1Ae
− 1
σ2
f
(∥yi∥22+∥f(xi)∥22)

] ≥ P(A) e
− 1
σ2
f
∥yi∥22−

1
σ2NM

2

. (A.3)

To lower bound the probability, denote V = supx∈X ∥f(x)∥2L2 . Note that V < ∞ by
Assumption 3.5. Estimate

P(A) = 1− P(Ac) ≥ 1−N sup
x∈X

P(|f(x)| ≥M) ≥ 1− NV

M2
. (A.4)

SetM =
√
2NV to find P(A) ≥ 1

2
. Hence

Ef [e
− 1
2σ2

f
∥yi−f(xi)∥22

] ≥ 1
2
e
− 1
σ2
f
∥yi∥22−

2
σ2
f
V N2

(A.5)

We conclude that the infimum is non-zero: (∥yi∥22)i≥1 is bounded, because (Di)i≥1 is
bounded.

Proposition 3.8 (Regularity of posterior prediction map, part one).

165

(1) For all data sets D ∈ D, there exists a constant cD > 0 such that

∥f(x)− f(y)∥Lp(πf (D)) ≤ cD|x− y|β whenever |x− y| < r. (A.6)

In addition, ∥f(x)∥Lp(πf (D)) <∞ for all x ∈ X .

(2) πf is continuous.

Proof. (1): Let D ∈ D and denote D = (x,y). Then use that

∥ • ∥Lp(πf (D)) = Ef [π′(D)(f)(•)p]1/p ≤ 1

(Z(x,y))1/p
∥ • ∥Lp , (A.7)

and we already noted that Z(x,y) > 0.

(2): Let Di → D and let L : Cb(X ,Y) → R be a continuous and bounded function. To
begin with, (x,y) 7→ Z(x,y) is continuous by pathwise continuity of f in combination
with bounded convergence, and (x,y) 7→ r(y − f(x)) is almost surely continuous also by
pathwise continuity of f . Hence, for almost every f , (D, f) 7→ π′(D)(f) is continuous inD.
In addition, (Di)i≥1 is bounded, so supi≥1, f∈YX π′(Di)(f) <∞ by Lemma A.1. Therefore,
by bounded convergence,

lim
i→∞

Eπf (Di)[L(f)] = lim
i→∞

Ef [π′(Di)(f)L(f)] (A.8)

= Ef [π′(D)(f)L(f)] (A.9)

= Eπf (D)[L(f)]. (A.10)

Since L was arbitrary, we conclude that πf (Di)⇀ πf (D).

A.2 Proofs for Section 3.3

Proposition 3.11. The neural process objective LNP is well defined.

Proof. Let (π, σ) ∈ M and D ∈ D. We have πf (D) ∈ P , so there exists a measurable
A1 ⊆ Ĩ such that x 7→ P

σf
x πf (D) is weakly continuous at all x ∈ A1 and

∫
A1
p(x) dx = 1.

Similarly, π(D) ∈ P , so there exists another measurable A2 ⊆ Ĩ such that x 7→ P σ
x π(D)

is weakly continuous at all x ∈ A2 and
∫
A2
p(x) dx = 1. Set A = A1 ∩ A2. Then still∫

A
p(x) dx = 1. Denote h : Ĩ → R ∪ {∞}, h(x) = KL(P

σf
x πf (D), P σ

x π(D)). Let τ be all
open sets of Ĩ . By weak lower semi-continuity of the Kullback–Leibler divergence (Posner,
1975), the restriction h|A of h to A is a lower semi-continuous function with respect to the
subspace topology (A,A ∩ τ). In particular, h|A is measurable with respect to the Borel
σ-algebra on (A,A ∩ τ), which is equal to σ(A ∩ τ) = A ∩ σ(τ) = A ∩ B(Ĩ). Since A has

166

probability one, this suggests that h is also measurable, which we now argue. Let y ∈ R.
Decompose

{x ∈ Ĩ : h(x) ≤ y} = {x ∈ A : h(x) ≤ y} ∪ {x ∈ Ĩ \ A : h(x) ≤ y}. (A.11)

By A ∩ B(I)–measurability of h|A, {x ∈ A : h(x) ≤ y} ∈ A ∩ B(Ĩ) ⊆ B(Ĩ). In addition,
{x ∈ Ĩ\A : h(x) ≤ y} ⊆ Ĩ\A, so it is measurable by completeness of p(x) (Assumption 3.2).
Therefore, {x ∈ Ĩ : h(x) ≤ y} is measurable. Since y ∈ R was arbitary, h is measurable.
We conclude that the expectation Ep(x)[KL(P

σf
x πf (D), P σ

x π(D))] is well defined.

By Proposition 3.8.(2), the posterior prediction map πf is continuous. Note that π is also
continuous. Then, for any x ∈ I and σ > 0, D 7→ (P

σf
x πf (D), P σ

x π(D)) is weakly
continuous, so D 7→ KL(P

σf
x πf (D), P σ

x π(D)) is lower semi-continuous by weak lower
semi-continuity of the Kullback–Leibler divergence (Posner, 1975). By Fatou’s lemma,
D 7→ Ep(x)[KL(P

σf
x πf (D), P σ

x π(D))] is then also lower semi-continuous. In particular, it
is measurable, which means that Ep(D)p(x)[KL(P

σf
x πf (D), P σ

x π(D))] is well defined.

Proposition 3.12. The neural process objective LNP is lower semi-continuous.

Proof. Consider (π, σ) 7→ P σ
x π(D). This function is weakly continuous; recall that the

topology onM is defined in Definition 3.9. The result then follows from Fatou’s lemma in
combination with weak lower semi-continuity of the Kullback–Leibler divergence (Posner,
1975).

Lemma A.2. Consider µ1, µ2 ∈ Pc. Let I ′ ⊆ I be dense. Then P σ1
x µ1 = P σ2

x µ2 for all x ∈ I ′

if and only if µ1 = µ2 and σ1 = σ2.

Proof. The “if” is clear, so we show the “only if”. Let f (1) ∼ µ1 and f (2) ∼ µ2. Fix some
x ∈ I , and let (x(ℓ)

1 , . . . ,x
(ℓ)
ℓ)ℓ≥1 ⊆ I be a sequence of tuples of vectors such that (1) every

concatenation x
(ℓ)
1 ⊕ · · · ⊕ x

(ℓ)
ℓ is in I ′; and (2) asm→∞, it holds that sup |x− x

(ℓ)
k | → 0,

where the supremum is over ℓ ≥ m and k = m, . . . , ℓ. To construct such a sequence, take
any sequence (zℓ)ℓ≥1 ⊆ I convergent to x and use density of I ′ to find, for every ℓ ≥ 1, an
element x(ℓ)

1 ⊕ · · · ⊕ x
(ℓ)
ℓ ∈ I ′ which is at most distance 1/ℓ from z1 ⊕ · · · ⊕ zℓ.

For all k ≥ 1, let ε(1)k ∼ N (0, σ2
1I) and ε

(2)
k ∼ N (0, σ2

2I). Set

y
(1)
ℓ =

1

ℓ

ℓ∑
k=1

f (1)(x
(ℓ)
k) +

1

ℓ

ℓ∑
k=1

ε
(1)
k , y

(2)
ℓ =

1

ℓ

ℓ∑
k=1

f (2)(x
(ℓ)
k) +

1

ℓ

ℓ∑
k=1

ε
(2)
k . (A.12)

By almost sure uniform continuity of f (1) and f (2) (X is compact) and the strong law of

167

large numbers,
y(1)
ℓ → f (1)(x) and y(2)

ℓ → f (2)(x) (A.13)

almost surely and therefore weakly. But, by assumption,

P σ1

x
(ℓ)
1 ⊕...⊕x

(ℓ)
ℓ

µ1 = P σ2

x
(ℓ)
1 ⊕...⊕x

(ℓ)
ℓ

µ2 for all ℓ ≥ 1, (A.14)

so y(1)
ℓ

d
= y(2)

ℓ for all ℓ ≥ 1. Therefore, since weak limits are unique, f (1)(x)
d
= f (2)(x). Since

x ∈ I was arbitrary, we conclude that f (1) d
= f (2).

To find that also σ1 = σ2, repeat the above construction with x instead fixed to some x̃ ∈ I ′.
Denote ỹ(1) = f (1)(x̃) + ε̃

(1) and ỹ(2) = f (2)(x̃) + ε̃
(2). Then

(y(1)
ℓ , ỹ

(1))→ (f (1)(x̃), ỹ(1)) and (y(2)
ℓ , ỹ

(2))→ (f (2)(x̃), ỹ(2)) (A.15)

weakly and (y(1)
ℓ , ỹ

(1))
d
= (y(2)

ℓ , ỹ
(2)) for all ℓ ≥ 1, so (f (1)(x̃), ỹ(1))

d
= (f (2)(x̃), ỹ(2)). Finally

apply (f ,y) 7→ y − f to find that ε̃(1) d
= ε̃

(2), so σ1 = σ2.

Proposition 3.13. Assume that Ĩ ⊆ I is dense. Then (π, σ) ∈ argminMc LNP if and only if

πf |D̃ = π|D̃ and σ = σf . (A.16)

Proof. It is clear that LNP(πf , σf) = 0. For the converse, assume that LNP(π, σ) = 0 for
some (π, σ) ∈M c. Then there exists a measurable A ⊆ D̃ such that

∫
A
p(D) dD = 1 and

Ep(x)[KL(P
σf
x πf (D), P σ

x π(D)] = 0 for all D ∈ A. (A.17)

Fix such a D ∈ A. Then there exists a measurable B ⊆ Ĩ such that
∫
B
p(x) dx = 1 and

P
σf
x πf (D) = P σ

x π(D) for all x ∈ B. But B is dense in Ĩ , because p(x) assigns positive
probability to every open set (Assumption 3.2), which means that B is also dense in I .
Therefore, by Lemma A.2, πf (D) = π(D) and σf = σ. Similarly, A is dense in D̃, because
p(D) assigns positive probability to every open set. Since πf and π are two continuous
functions that agree on a dense subset of D̃, πf and π must agree on all of D̃.

A.3 Proofs for Section 3.4

Proposition 3.27 (Characterisation of GNPA). Assume that infQG LNP <∞. Also assume

that Ĩ is dense in IN for some N ≥ 2. Then a noisy prediction map (π, σ) ∈ QG is a GNPA if

and only if

mπ|D̃ = mf |D̃, kπ|D̃ = kf |D̃, and σ = σf . (A.18)

168

Proof. Let PNλ be the collection of distributions on RN that (a) have a density with respect
to the Lebesgue measure and (b) have a covariance matrix which is strictly positive definite.
Let PNλ,G ⊆ PNλ be subcollection of distributions which are Gaussian. Consider µ ∈ PNλ and
ν ∈ PNλ,G such that infνG∈PN

λ,G
KL(µ, νG) <∞. Define

G(µ, ν) = KL(µ, ν)− inf
νG∈PN

λ,G

KL(µ, νG) (A.19)

Note that G(µ, ν) ≥ 0, because ν ∈ PNλ,G. Moreover, a computation shows that G(µ, ν) =
KL(N (µ), ν) where we denote N (µ) = N (µ,Σ) with µ the mean vector of µ and Σ the
covariance matrix of µ. Therefore,

KL(µ, ν) = G(µ, ν) + inf
νG∈PN

λ,G

KL(µ, νG) (A.20)

and G(µ, ν) = 0 if and only if ν = N (µ).

Consider (π, σ) ∈ QG. Let x ∈ Ĩ and D ∈ D̃. Note that P
σf
x πf (D) ∈ PNλ and P σ

x π(D) ∈
PNλ,G. Moreover, using that σf > 0, infνG∈PN

λ,G
KL(P

σf
x πf (D), νG) <∞, so

KL(P
σf
x πf (D), P σ

x π(D))

= G(P σf
x πf (D), P σ

x π(D)) + inf
νG∈PN

λ,G

KL(P
σf
x πf (D), νG). (A.21)

We therefore have the decomposition

Ep(D)p(x)[KL(P
σf
x πf (D), P σ

x π(D))] (A.22)

= Ep(D)p(x)[G(P
σf
x πf (D), P σ

x π(D))]

(i)

+Ep(D)p(x)[inf
νG∈PN

λ,G

KL(P
σf
x πf (D), νG)]

(ii)

.

It is clear that (ii) ≤ infQG LNP <∞, so (ii) is finite. Hence, (π, σ) minimises LNP over QG

if and only if (π, σ) minimises (i) over QG.

Suppose that (i) is zero. Then there exists a measurable A ⊆ D̃ such that
∫
A
p(D) dD = 1

and
Ep(x)[G(P

σf
x πf (D), P σ

x π(D))] = 0 for all D ∈ A. (A.23)

Fix such a D ∈ A. Then there exists a measurable B ⊆ Ĩ such that
∫
B
p(x) dx = 1 and

G(P σf
x πf (D), P σ

x π(D)) = 0 for all x ∈ B. (A.24)

169

Hence, P σ
x π(D) = N (P

σf
x πf (D)) for all x ∈ B, which means that

mπ(D)(x′) = mf (D)(x′) (A.25)

kπ(D)(x′, y′) + σ2
1(x′ = y′) = kf (D)(x′, y′) + σ2

f1(x
′ = y′) (A.26)

for all x ∈ B and x′, y′ ∈ {x1, . . . , x|x|}. But B is dense in Ĩ , because p(x) assigns positive
probability to every open set (Assumption 3.2). Additionally, by assumption, Ĩ is dense in
XN for some N ≥ 2. Therefore, (A.25) and (A.26) hold for a collection of (x′, y′) dense in
X 2. The condition that N ≥ 2 is necessary, otherwise always x′ = y′, so (A.26) would not
necessarily hold for x′ ̸= y′. Taking appropriate limits, using thatmπ,mf , kπ, and kf are
continuous, we hence find that

mπ|B = mf |B, kπ|B = kf |B, and σ = σf . (A.27)

Finally, using density of B in D̃ in combination with continuity of πf and π gives

mπ|D̃ = mf |D̃, kπ|D̃ = kf |D̃, and σ = σf , (A.28)

which is the desired condition. Conversely, suppose that (A.28) is satisfied. Then (A.25) and
(A.26) are satisfied for all x′, y′ ∈ X and D ∈ D̃, so (i) is zero.

Proposition 3.26 (Characterisation of CNPA). Assume that infQG,MF LNP <∞. Also assume

that Ĩ is dense in IN for some N ≥ 1. Then a noisy prediction map (π, σ) ∈ QG,MF is a CNPA

if and only if

mπ|D̃ = mf |D̃ and vπ|D̃ + σ2 = vf |D̃ + σ2
f , (A.29)

Proof. The proof goes exactly like the proof of Proposition 3.27, with the following modific-
ations. Additionally assume that the distributions in PNλ,G factorise, i.e. that the dimensions
are independent. Then G(µ, ν) = 0 if and only if ν = Nd(µ) where Nd(µ) = N (µ, d(Σ))
with d(Σ) the diagonal matrix with diagonal equal to diag(Σ). The key difference with
respect to the proof of Proposition 3.27 is that kπ(D) in (A.25) and (A.26) is now only
evaluated at x′ = y′, which yields a condition on the variance map. Because the variance
map is a function of one argument, rather than requiring N ≥ 2, the requirement N ≥ 1

suffices. Since always x′ = y′, the indicator functions in (A.25) and (A.26) cannot be used
any more to find σ = σf ; we now only find vπ|D̃ + σ2 = vf |D̃ + σ2

f .

Proposition 3.28 (Regularity of GNPA). Let (π, σ) ∈ QG be a Gaussian neural process

approximation. Then, for all data sets D ∈ D̃,

∥f(x)− f(y)∥L2(π(D)) ≤ cD|x− y|β whenever |x− y| < r, (A.30)

170

where cD > 0 is the constant from Proposition 3.8.(1) and the Hölder exponent β ∈ (1
p
, 1] and

radius r > 0 are from Assumption 3.5.

Proof. LetD ∈ D̃. By Proposition 3.27,mπG(D) = mf (D) and kπG(D) = kf (D). Therefore,
for any x, y ∈ X ,

∥f(x)− f(y)∥L2(πG(D)) = ∥f(x)− f(y)∥L2(πf (D)). (A.31)

The result then follows from ∥ • ∥L2(πf (D)) ≤ ∥ • ∥Lp(πf (D)) (p ≥ 2; see Assumption 3.5) in
combination with Proposition 3.8.(1).

A.4 Proofs for Section 3.5

Lemma A.3.
|r(x1)− r(x2)| ≤

1

σ
∥x1 − x2∥2. (A.32)

Proof. For x1, x2 ∈ R, using the fundamental theorem of calculus,

|e−
1
2
x21 − e−

1
2
x22| =

∣∣∣∣∫ x2

x1

xe−
1
2
x2 dx

∣∣∣∣ ≤ ∥x 7→ xe−
1
2
x2∥∞|x1 − x2|, (A.33)

and ∥x 7→ xe−
1
2
x2∥∞ ≤ 1. Set x1 = 1

σ
∥x1∥2 and x2 = 1

σ
∥x2∥2, so

|r(x1)− r(x2)| ≤
1

σ
|∥x1∥2 − ∥x2∥2| ≤

1

σ
∥x1 − x2∥2, (A.34)

which concludes.

Lemma A.4. There exist universal cℓ and cu such that, for all (x,y) ∈ D̃,

0 < cℓ ≤ Z(x,y) ≤ cu <∞. (A.35)

In particular, 1
2
e
− 1

σ2B
2
D̃
(1+2B2

f) ≤ cℓ and cu ≤ 1.

Proof. The proof is similar to Lemma A.1. For the lower bound on cℓ, see (A.5).

For f ∈ C(X ,Y), define the modulus of continuity by

ωf (h) = sup
x,y∈X : |x−y|<h

|f(x)− f(y)|. (A.36)

171

Proposition A.5. Under Assumption 3.5,

P(ωf (h) ≥ ε) ≤ cβ,p
ε
hβ−

1
p (A.37)

where cβ,p > 0 is a constant only depending on c, β, and p.

Proof. This follows directly from Proposition A.8. Proposition A.8 is a stronger result which
we will prove later.

Proposition A.6. There exists a universal cZ > 0 such that, for all D1, D2 ∈ D,

|Z(x1,y1)− Z(x2,y2)| ≤ cZ dD(D1, D2)
1
2
(β− 1

p
) whenever dD(D1, D2) < 1 (A.38)

where D1 = (x1,y1) and D2 = (x2,y2).

Proof. Suppose that D1, D2 ∈ DN . Consider the event A = {f : ωf (∥x1 − x2∥∞) < ε}.
We have

|Z(x1,y1)− Z(x2,y2)| ≤ |Ef [(r(y1 − f(x1))− r(y2 − f(x2)))1A]|+ 2P(Ac). (A.39)

We bound the two terms separately, starting with the second term:

P(Ac) = P(ωf (∥x1 − x2∥∞) ≥ ε) ≤ cβ,p
ε
∥x1 − x2∥

β− 1
p

∞ . (A.40)

For the first term, simply take a supremum and use Lemma A.3:

|Ef [1A(r(y1 − f(x1))− r(y2 − f(x2)))]|

≤ sup
f∈A
|r(y1 − f(x1))− r(y2 − f(x2))| (A.41)

≤ 1

σ
sup
f∈A

(∥f(x1)− f(x2)∥2 + ∥y1 − y2∥2) (A.42)

≤ 1

σ
sup
f∈A

(
√
Nωf (∥x1 − x2∥∞) + ∥y1 − y2∥2) (A.43)

≤ 1

σ
(
√
Nε+ ∥y1 − y2∥2), (A.44)

where the last inequality follows from that ωf (∥x1 − x2∥∞) ≤ ε for all f ∈ A. Putting the
bounds for the two terms together, we have

|Z(x1,y1)− Z(x2,y2)| ≤
2cβ,p
ε
∥x1 − x2∥

β− 1
p

∞ +
1

σ
(
√
Nε+ ∥y1 − y2∥2). (A.45)

This holds for any choice of ε > 0, so we may also take an infimum over ε > 0. For a, b ≥ 0,

172

note that the infimum of a/ε+ b over ε > 0 is given by 2
√
ab. Therefore,

|Z(x1,y1)− Z(x2,y2)| ≤
2
√
2

√
σ
(
√
Ncβ,p)

1
2∥x1 − x2∥

1
2
(β− 1

p
)

∞ +
1

σ
∥y1 − y2∥2. (A.46)

Finally note that ∥x1 − x2∥∞ < 1 and ∥y1 − y2∥2 < 1 whenever dD(D1, D2) < 1 to find
the result.

Proposition A.7. Let D1, D2 ∈ DN ∩ D̃ and denote D1 = (x1,y1) and D2 = (x2,y2).

Let F : C(X ,Y) → R be a continuous functional such that, for some γ′ > 0, BF =

∥F (f)∥L1+γ′ <∞. Then there exists a function L : [0,∞)→ [0,∞) such that

|Eπ(D1)[F (f)]− Eπ(D2)[F (f)]| ≤ L(d(D1, D2)). (A.47)

Moreover, L only depends on the universal parameters, γ′, and BF ; and L goes to zero as

d(D1, D2) goes to zero.

Proof. Consider the event A = {f : ωf (∥x1 − x2∥∞) < ε}. Denote g(x,y) = r(y −
f(x))/Z(x,y) and note that g(x1,y1) ≤ 1/cℓ and g(x2,y2) ≤ 1/cℓ, where cℓ is defined in
Lemma A.4. Then

|Eπ(D1)[F (f)]− Eπ(D2)[F (f)]|

= |Ef [(g(x1,y1)− g(x2,y2))F (f)]| (A.48)

≤ |Ef [1A(g(x1,y1)− g(x2,y2))F (f)]|+
2

cℓ
Ef [1Ac |F (f)|]. (A.49)

We bound the two terms separately, starting with the second term:

E[1Ac|F (f)|] ≤ ∥F (f)∥L1+γ′P(Ac)
γ′

1+γ′ ≤ ∥F (f)∥L1+γ′

[
cβ,p
ε
∥x1 − x2∥

β− 1
p

∞

] γ′
1+γ′

. (A.50)

For the first term, observe that, for any two functions f and g such that 0 < cℓ ≤ g and
f, g ≤ cu <∞,∣∣∣∣f(x1)g(x1)

− f(x2)

g(x2)

∣∣∣∣ ≤ cu
c2ℓ
(|f(x1)− f(x2)|+ |g(x1)− g(x2)|). (A.51)

Therefore, taking a supremum,

|Ef [1A(g(x1,y1)− g(x2,y2))F (f)]| (A.52)

≤ cu
c2ℓ
∥F (f)∥L1 sup

f∈A

[
|r(y1 − f(x1))− r(y2 − f(x2))|+ |Z(x1,y1)− Z(x2,y2)|

]
.

173

Here, using Lemma A.3 and Proposition A.6,

|r(y1 − f(x1))− r(y2 − f(x2))| ≤
1

σ
(∥f(x1)− f(x2)∥2 + ∥y1 − y2∥2) (A.53)

≤ 1

σ
(
√
Nωf (∥x1 − x2∥∞) + ∥y1 − y2∥2), (A.54)

|Z(x1,y1)− Z(x2,y2)| ≤ LZ(d(D1, D2)), (A.55)

so, using that ωf (∥x1 − x2∥∞) ≤ ε for f ∈ A,

|Ef [1A(g(x1,y1)− g(x2,y2))F (f)]|

≤ cu
c2ℓ
∥F (f)∥L1

[
1

σ
(
√
Nε+ ∥y1 − y2∥2) + LZ(d(D1, D2))

]
. (A.56)

Putting the bounds for the two terms together, we have

|Eπ(D1)[F (f)]− Eπ(D2)[F (f)]|

≤ 2

cℓ
∥F (f)∥L1+γ′

[
cβ,p
ε
∥x1 − x2∥

β− 1
p

∞

] γ′
1+γ′

+
cu
c2ℓ
∥F (f)∥L1

[
1

σ
(
√
Nε+ ∥y1 − y2∥2) + LZ(d(D1, D2))

]
, (A.57)

which we simplify to

cℓ
2
∥F (f)∥−1

L1+γ′ |Eπ(D1)[F (f)]− Eπ(D2)[F (f)]| (A.58)

≤
[
cβ,p
ε
∥x1 − x2∥

β− 1
p

∞

] γ′
1+γ′

+
cu
cℓ

[
1

σ
(
√
Nε+ ∥y1 − y2∥2) + LZ(d(D1, D2))

]
.

This holds for any choice of ε > 0, so we may also take an infimum over ε > 0. Temporarily
denote ρ = γ′

1+γ′
. For a, b ≥ 0 and ρ > 0, note that the infimum of (a/ε)ρ+ bε over ε > 0 is

given by cρ(ab)
ρ

1+ρ with cρ = ρ
1

1+ρ + ρ−
ρ

1+ρ . Therefore,

cℓ
2
∥F (f)∥−1

L1+γ′ |Eπ(D1)[F (f)]− Eπ(D2)[F (f)]| (A.59)

≤ cρ

[
cu
cℓ

√
N

σ
cβ,p∥x1 − x2∥

β− 1
p

∞

] γ′
1+2γ′

+
cu
cℓ

[
1

σ
∥y1 − y2∥2 + LZ(d(D1, D2))

]
,

noting that ρ
1+ρ

= γ′

1+2γ′
.

Proposition 3.33 (Regularity of posterior prediction map, part two).

(1) There exist universal constants cm > 0 and ck > 0 such that, for any two D1, D2 ∈ D̃,

174

whenever dD(D1, D2) < 1, then

sup
x∈X
|Eπf (D1)[f(x)]− Eπf (D2)[f(x)]| ≤ cm dD(D1, D2)

2+2γ
3+2γ

(β− 1
p
), (A.60)

sup
x,y∈X

|Eπf (D1)[f(x)f(y)]− Eπf (D2)[f(x)f(y)]| ≤ ck dD(D1, D2)
γ

1+γ
(β− 1

p
). (A.61)

(2) Consequently, for any D1, D2 ∈ D̃ and x, y ∈ X , whenever dD(D1, D2) < 1, |x1 −
x2| < r, and |y1 − y2| < r, then

|Eπf (D1)[f(x1)]− Eπf (D2)[f(x2)]| ≤ cm dD(D1, D2)
2+2γ
3+2γ

(β− 1
p
) +

c

cℓ
|x1 − x2|β (A.62)

and

|Eπf (D1)[f(x1)f(y1)]− Eπf (D2)[f(x2)f(y2)]|

≤ ck dD(D1, D2)
γ

1+γ
(β− 1

p
) +Bf

c

c2ℓ
|x1 − x2|β +Bf

c

c2ℓ
|y1 − y2|β, (A.63)

where cℓ > 0 is a universal constant from Lemma A.4.

Proof. (1): For the mean, choose some x ∈ X , apply Proposition A.7 with F (f) = f(x) and
γ′ = 1 + γ, and verify that

∥f(x)∥L1+γ′ ≤ sup
x∈X
∥f(x)∥L2+γ = Bf , (A.64)

which only depends on the universal parameters. For the covariance, choose two x, y ∈ X ,
apply Proposition A.7 with F (f) = f(x)f(y) and γ′ = 1

2
γ, and verify that

∥f(x)f(y)∥L1+γ′ ≤ ∥f(x)∥L2+2γ′∥f(y)∥L2+2γ′ ≤ sup
x∈X
∥f(x)∥2L2+γ = B2

f (A.65)

which again only depends on the universal parameters.

(2): We will repeatedly use the observation that, for any q ≥ 1 and D ∈ D̃,

∥ • ∥Lq(π(D)) ≤
1

c
1/q
ℓ

∥ • ∥Lq (A.66)

175

where cℓ is from Lemma A.4. We first prove the inequality for the mean:

|Eπ(D1)[f(x1)]− Eπ(D2)[f(x2)]|

≤ |Eπ(D1)[f(x1)]− Eπ(D2)[f(x1)]|+ |Eπ(D2)[f(x1)]− Eπ(D2)[f(x2)]| (A.67)

≤ Lm(d(D1, D2)) + ∥f(x1)− f(x2)∥L1(π(D2)) (A.68)

≤ Lm(d(D1, D2)) +
c

cℓ
|x1 − x2|β (A.69)

where the second inequality follows from part (2) and the third inequality from the obser-
vation combined with Assumption 3.5. For the covariance,

|Eπ(D1)[f(x1)f(y1)]− Eπ(D2)[f(x2)f(y2)]|

≤ |Eπ(D1)[f(x1)f(y1)]− Eπ(D2)[f(x1)f(y1)]|

+ |Eπ(D2)[f(x1)f(y1)]− Eπ(D2)[f(x1)f(y2)]|

+ |Eπ(D2)[f(x1)f(y2)]− Eπ(D2)[f(x2)f(y2)]|. (A.70)

From part (2), we have

|Eπ(D1)[f(x1)f(y1)]− Eπ(D2)[f(x1)f(y1)]| ≤ Lk(d(D1, D2)). (A.71)

We also have

|Eπ(D2)[f(x1)(f(y1)− f(y2))]| ≤ ∥f(x1)∥L2(π(D2))∥f(y1)− f(y2)∥L2(π(D2)) (A.72)

≤ 1

cℓ
∥f(x1)∥L2∥f(y1)− f(y2)∥L2 (A.73)

≤ Bf
c

cℓ
|y1 − y2|β. (A.74)

Therefore,

|Eπ(D1)[f(x1)f(y1)]− Eπ(D2)[f(x2)f(y2)]|

≤ Lk(d(D1, D2)) +Bf
c

cℓ
|x1 − x2|β +Bf

c

cℓ
|y1 − y2|β, (A.75)

which concludes.

Proposition 3.34 (Consistency of CNPA). Assume that Ĩ is dense in IN for some N ≥ 1,

and assume that supx∈Ĩ |x| <∞. Let (πM , σM) ∈ Q̃G,MF be such that

LM(πM , σM) ≤ infQ̃G,MF
LM + oP(1). (A.76)

Then, asM →∞, the distance of (πM , σM) to the closest CNPA converges to zero in probability.

176

Proof. The result follows directly from Proposition 3.26 in combination with Theorem 5.41
by van der Vaart (1998). It remains to verify the conditions for Theorem 5.4.1. Convergence
in the metric on Q̃G,MF (see (3.28)) implies convergence of all means and variances, which is
stronger than the required continuity condition. For the integrability condition, combine
the following three facts. First, by assumption, the maximum target set size is bounded.
Second, the universal Hölder condition implies that supπ∈Q̃G,MF, D∈D̃, x∈X Eπ(D)[f

2(x)] <∞,
which bounds all means and covariances. Third, by Assumption 3.30 and the following
paragraph, every noise variance σ is in [σ, σ].

Proposition 3.35 (Consistency of GNPA). Assume that Ĩ is dense in IN for some N ≥ 2,

and assume that supx∈Ĩ |x| <∞. Let (πM , σM) ∈ Q̃G be such that

LM(πM , σM) ≤ infQ̃G
LM + oP(1). (A.77)

Then, asM →∞, the distance of (πM , σM) to the GNPA converges to zero in probability.

Proof. The proof goes exactly like the proof of Proposition 3.34.

Proposition A.8. Consider (µi)i≥1 ⊆ Pc. Suppose there exist p > 0, β > 1
p
, a constant c > 0,

and a radius r > 0 such that

sup
i≥1
∥f(x)− f(y)∥Lp(µi) ≤ c|x− y|β whenever |x− y| < r. (A.78)

Then, for all ε > 0,

sup
i≥1

µi(ωf (h) ≥ ε) ≤ c

ε

2

1− 2−(β− 1
p
)
hβ−

1
p . (A.79)

Proof. Choose k ∈ N such that 2−(k+1) ≤ h ≤ 2−k. The proof strategy mimics the proof of
Theorem 4.2.1 by Norris (2018). Let i ∈ N. For n ∈ N, denote Dn = {0, 2−n, 2 · 2−n, . . . , 1}.
Consider f ∈ C([0, 1],Y). Set

Kn = sup
x∈Dn\{1}

= |f(x+ 2−n)− f(x)|. (A.80)

Overestimate the supremum by a sum and use Lp-Hölder continuity of µi:

Eµi [Kp
n] ≤ c

2n−1∑
i=0

Eµi [|f(x+ 2−n)− f(x)|p] ≤ c
2n−1∑
i=0

2−βpn = 2−(βp−1)n. (A.81)

For any x, y ∈
⋃∞
n=1 Dn such that x < y < x+2−k, note that the interval [x, y) is the finite,

disjoint union of intervals [r, r + 2−n) with r ∈ Dn for n ≥ k + 1 where no three intervals
have the same length (proof of Theorem 4.2.1; Norris, 2018). Therefore, for such x and y, by

177

continuity of f ,

ωf (2
−k) = sup

x,y∈
⋃∞

n=1 Dn:|x−y|<2−k

|f(x)− f(y)| ≤ 2
∞∑

n=k+1

Kn. (A.82)

Hence,

Eµi [ωf (2−k)] ≤ 2
∞∑

n=k+1

Eµi [Kp
n]

1
p ≤ 2c

∞∑
n=k+1

2−(β− 1
p
)n = c

21−(β− 1
p
)(k+1)

1− 2−(β− 1
p
)
, (A.83)

using that β − 1
p
> 0, where is some constant cp,q that depends on p, β and c. Then, for any

ε > 0, by Markov’s inequality,

sup
i≥1

µi(ωf (h) ≥ ε) ≤ sup
i≥1

µi(ωf (2
−k) ≥ ε) ≤ 2c

ε

2−(β− 1
p
)k

2β−
1
p − 1

≤ 2c

ε

(2h)β−
1
p

2β−
1
p − 1

(A.84)

which proves the result.

178

B | Proofs for Chapter 4

B.1 Proofs for Section 4.2

In what follows, D,E, F ∈ D will denote generic data sets, and A ⊆ D will denote a
generic collection of data sets. For ε > 0, denote the open balls of radius ε by

Bε(D) = {E ∈ D : dD(D,E) < ε}, Bε([D]) = {E ∈ D : d[D]([D], [E]) < ε}. (B.1)

Let S =
⋃
N≥0 SN be the collection of permutations of any size.

Proposition 4.2.

(1) The function d[D] is a metric on [D].

(2) If A ⊆ D is open, then [A] is open in the topology of d[D].

(3) If A ⊆ D is closed and permutation invariant, then [A] is closed in the topology of d[D].

(4) The topology on [D] induced by d[D] coincides with the quotient topology.

Proof. (1): To begin with, observe that dD(D,E) = dD(σD, σE) for all σ ∈ S|D|. We call
this property permutation invariance of dD. We first show that d[D] is well defined. To this
end, consider D,D′, E, E ′ ∈ D such that D = σDD

′ and E = σEE
′ for some σD ∈ S|D′|

and σE ∈ S|E′|. In particular, this means that |D| = |D′| and |E| = |E ′|. Then

d[D]([D], [E]) = inf
σ2∈S|E|

dD(D, σ2E) (B.2)

= inf
σ2∈S|E′|

dD(σDD
′, σ2σEE

′) (B.3)

= inf
σ2∈S|E′|

dD(D
′, σ−1

D σ2σEE
′) (B.4)

= inf
σ2∈S|E′|

dD(D
′, σ2E

′) (B.5)

= d[D]([D
′], [E ′]). (B.6)

We conclude that d[D] does not depend on the choice of the representative, so it is well
defined. It remains to show that d[D] is a metric. It is clear that d[D]([D], [E]) = d[D]([E], [D])

179

and that d[D]([D], [E]) = 0 if and only if [D] = [E]. To show the triangle inequality, let
D,E, F ∈ D. We will show that

d[D]([D], [F]) ≤ d[D]([D], [E]) + d[D]([E], [F]). (B.7)

If either of the terms on the right-hand side is infinite, then nothing remains to be shown.
Hence, assume that both are finite. In that case, |D| = |E| = |F |. Let σ2, σ′

2 ∈ S|D|. Then,
by the triangle inequality of dD,

dD(D, σ2σ
′
2F) ≤ dD(D, σ2E) + dD(σ2E, σ2σ

′
2F) = dD(D, σ2E) + dD(E, σ

′
2F), (B.8)

using permutation invariance of dD. Take the infimum over σ2 ∈ S|D| then σ′
2 ∈ S|D| to

conclude.

(2): Let [D] ∈ [A]. Then there exists a σ ∈ S such that σD ∈ A. Hence, there exists a ε > 0

such that Bε(σD) ⊆ A. We claim that Bε([D]) ⊆ [A], which shows the result. To show
the claim, let [E] ∈ Bε([D]). Then d[D]([D], [E]) < ε, so dD(D, σ′E) < ε for some σ′ ∈ S,
meaning that dD(σD, σσ′E) < ε. Hence σσ′E ∈ Bε(σD) ⊆ A, so [E] = [σσ′E] ∈ [A].

(3): Let ([Di])i≥1 ⊆ [A] be convergent to some [D] ∈ [D]. Then d([Di], [D])→ 0, so there
exists a sequence (σi)i≥1 such that d(σiDi, D)→ 0. Since A is permutation invariant, all
σiDi ∈ A. Hence D ∈ A, because A is closed. We conclude that [D] ∈ [A], so [A] is also
closed.

(4): Denote p : D → [D], p(D) = [D]. Note that p is dD–d[D] continuous. Let [A] ⊆ [D]. If
[A] is open in the quotient topology, then, by definition, p−1([A]) is open. Hence, by (3),
p(p−1([A])) is open in d[D]. Conversely, assume that [A] is open in d[D]. Then, by dD–d[D]

continuity of p, p−1([A]) is open in dD. Hence, [A] is open in the quotient topology.

Proposition 4.3. Suppose that f : D → Z is continuous and permutation invariant. Then

[f] : [D]→ Z defined by [f]([D]) = f(D′) for anyD′ such thatD′ = [D] is well defined and

continuous. Conversely, suppose that [f] : [D]→ Z is continuous. Then f : D → Z defined by

f(D) = [f]([D]) is continuous and permutation invariant.

Proof. That [f] is well defined follows from permutation invariance of f , and that [f] is
continuous follows from continuity of f . Using continuity of the quotient map D 7→ [D],
the converse is immediate.

180

B.2 Proofs for Section 4.4

Call a space F of functions on X interpolating if, for every N ∈ N, x ∈ XN , and y ∈ RN ,
there exists an f ∈ F such that f(xn) = yn for all n = 1, . . . , N . Note that every reprodu-
cing kernel Hilbert space associated to a strictly-positive-definite kernel is interpolating.
Throughout, we assume that Y is compact.

Lemma B.1. Let [D′
N] ⊆ [DN] have multiplicity K . Set

ϕ : Y → RK+1, ϕ(y) = (y0, y1, · · · , yK). (B.9)

Let k : X×X → R be a continuous strictly-positive-definite kernel. Denote the reproducing ker-

nel Hilbert space of k byH. EndowHK+1 with the inner product ⟨f, g⟩HK+1 =
∑K+1

i=1 ⟨fi, gi⟩H.
Define

HN =

{
N∑
n=1

ϕ(yn)k(• , xn) : [(xn, yn)
N
n=1] ⊆ [D′

N]

}
⊆ HK+1, (B.10)

Then the embedding

encN : [D′
N]→ HN , encN([(x1, y1), . . . , (xN , yN)]) =

N∑
n=1

ϕ(yn)k(• , xn) (B.11)

is injective, hence invertible, and continuous.

Proof. First, we show that encN is injective. Suppose that

N∑
n=1

ϕ(yn)k(• , xn) =
N∑
n=1

ϕ(y′n)k(• , x
′
n). (B.12)

Denote x = (x1, . . . , xN) and y = (y1, . . . , yN), and denote x′ and y′ similarly. Taking
the inner product with any f ∈ H on both sides and using the reproducing property of k
implies that

N∑
n=1

ϕ(yn)f(xn) =
N∑
n=1

ϕ(y′n)f(x
′
n) for all f ∈ H. (B.13)

In particular, by construction ϕ1(•) = 1, so

N∑
n=1

f(xn) =
N∑
n=1

f(x′n) (B.14)

for all f ∈ H. Using that H is interpolating, choose an element x̂ of x or x′, and let f ∈ H

181

be such that f(x̂) = 1 and f(•) = 0 at all other elements of x and x′. Then∑
n :xn=x̂

1 =
∑

n :x′n=x̂

1, (B.15)

so the number of x̂ in x and the number of x̂ in x′ are the same. Since this holds for
every x̂, x is a permutation of x′: x = σx′ for some permutation σ ∈ SN . Plugging in the
permutation, we can write

N∑
n=1

ϕ(yn)f(xn) =
N∑
n=1

ϕ(y′n)f(x
′
n) (B.16)

=
N∑
n=1

ϕ(y′n)f(xπ−1(n)) (x′ = σ−1x) (B.17)

=
N∑
n=1

ϕ(y′π(n))f(xn). (n← σ−1(n)) (B.18)

Then, by a similar argument, for any particular x̂,∑
n :xn=x̂

ϕ(yn) =
∑

n :xn=x̂

ϕ(y′σ(n)). (B.19)

Let the number of terms in each sum equal S. Since [D′
N] has multiplicity K , S ≤ K .

Consider the first S dimensions of ϕ in (B.19). Then, using the definition of ϕ, Lemma 4 by
Zaheer et al. (2017) shows that

(yn)n :xn=x̂ is a permutation of (y′σ(n))n :xn=x̂. (B.20)

By σx = x′, note that x′σ(n) = xn = x̂ for all these n. Therefore, all these xn and x′σ(n) are
equal. Using (B.20), adjust the permutation σ to obtain yn = y′σ(n) for all these n. Since all
these xn and x′σ(n) are equal, still x = σx′ after the adjustment. Performing this adjustment
for all x̂, we find that y = σy′ and x = σx′.

Second, we show that EN is continuous. Compute∥∥∥∥∥
N∑
n=1

ϕ(yn)k(• , xn)−
N∑
n=1

ϕ(y′n)k(• , x
′
n)

∥∥∥∥∥
2

HK+1

(B.21)

=
K+1∑
i=1

(ϕT(y)k(x,x)ϕi(y)− 2ϕT(y)k(x,x′)ϕi(y
′) + ϕT(y′)k(x′,x′)ϕi(y

′)),

which, by continuity of k, goes to zero if [(x′,y′)]→ [(x,y)].

182

Lemma B.2. Consider Lemma B.1. Suppose that [D′
N] is also closed and that k also satisfies

(1) k(x, x) = σ2 > 0, (2) k ≥ 0, and (3) k(x, x′) → 0 as |x| → ∞. Then HN is closed in

HK+1. Moreover, encN is a homeomorphism.

Proof. Define
[DJ] = [([−J, J]× Y)N] ∩ [D′

N], (B.22)

which is compact in [DN] as a closed subset of the compact set [([−J, J]× Y)N]. We aim
to show that HN is closed in HK+1 and that enc−1

N is continuous. To this end, consider a
convergent sequence

f (m) =
N∑
n=1

ϕ(y(m)
n)k(• , x(m)

n)→ f ∈ HK+1. (B.23)

Denote x(m) = (x
(m)
1 , . . . , x

(m)
N) and y(m) = (y

(m)
1 , . . . , y

(m)
N). Claim: (x(m))m≥1 is a

bounded sequence, so (x(m))m≥1 ⊆ [−J, J]N for J large enough, which means that
[(x(m),y(m))m≥1] ⊆ [DJ].

First, assuming the claim, we show that HN is closed. By boundedness of (x(m),y(m))m≥1,
(f (m))m≥1 is in the image of encN |[DJ] : [DJ] → HN . By continuity of encN |[DJ] and com-
pactness of [DJ], the image of encN |[DJ] is compact and hence closed. Therefore, the image
of encN |[DJ] contains the limit f . Since the image of encN |[DJ] is included in HN , we have
that f ∈ HN , which shows that HN is closed.

Second, assuming the claim, we prove that enc−1
N is continuous. Consider encN |[DJ] : [DJ]→

encN([DJ]) restricted to its image. Then (encN |[DJ])
−1 is continuous, because every con-

tinuous bijection from a compact space to a Hausdorff space is a homeomorphism (Theorem
26.6; Munkres, 2000). Therefore,

enc−1
N (f (m)) = [(x(m),y(m))] = (encN |[DJ])

−1(f (m))→ (encN |[DJ])
−1(f). (B.24)

Denote (encN |[DJ])
−1(f) = [(x,y)]. By continuity and invertibility of encN , then f (m) →

encN([(x,y)]), which means that [(x,y)] = enc−1
N (f) by uniqueness of limits. We conclude

that enc−1
N (f (m))→ enc−1

N (f), so enc−1
N is continuous.

It remains to show the claim. Let f1 denote the first element of f , i.e. the density channel.
Using the reproducing property of k,

|f (m)
1 (x)− f1(x)| = |⟨k(x, •), f (m)

1 − f1⟩H| (B.25)

≤ ∥k(x, •)∥H∥f (m)
1 − f1∥H (B.26)

= σ∥f (m)
1 − f1∥H, (B.27)

183

so f (n)
1 → f1 in H means that it does so uniformly. Hence, we can let M ∈ N be such

that m ≥ M implies that |f (m)
1 (x) − f1(x)| < 1

3
σ2 for all x ∈ X . Let R be such that

|k(x, x(M)
n)| < 1

3
σ2/N for |x| ≥ R and all n ∈ {1, . . . , N}. Then, for |x| ≥ R,

|f (M)
1 (x)| ≤

N∑
n=1

|k(x, x(M)
n)| < 1

3
σ2, (B.28)

which implies that, for all |x| ≥ R,

|f1(x)| ≤ |f (M)
1 (x)|+ |f (M)

1 (x)− f1(x)| < 2
3
σ2. (B.29)

At the same time, by pointwise nonnegativity of k, we have that

f
(m)
1 (x(m)

n) =
N∑

n′=1

k(x(n)n , x
(n)
n′) ≥ k(x(m)

n , x(m)
n) = σ2. (B.30)

Towards contradiction, suppose that (x(m))m≥1 is unbounded. Then (x(m)
n)m≥1 is unbounded

for some n ∈ {1, . . . , N}. Therefore, |x(m)
n | ≥ R for somem ≥M , so

2
3
σ2 > |f1(x(m)

n)| ≥ |f (m)
1 (x(m)

n)| − |f (m)
1 (x(m)

n)− f1(x(m)
n)| ≥ σ2 − 1

3
σ2 = 2

3
σ2, (B.31)

which is a contradiction.

Lemma B.3. Suppose that [D′] ⊆ [D] is closed, has multiplicityK , and has maximum data

set size Nmax <∞. Set

ϕ : Y → RK+1, ϕ(y) = (y0, y1, · · · , yK). (B.32)

Let k : X × X → R be a continuous strictly-positive-definite kernel such that (1) k(x, x) =

σ2 > 0, (2) k ≥ 0, and (3) k(x, x′)→ 0 as |x| → ∞. Denote the reproducing kernel Hilbert

space of k by H. Endow HK+1 with the inner product ⟨f, g⟩HK+1 =
∑K+1

i=1 ⟨fi, gi⟩H. For

N ∈ {0, . . . , Nmax}, denote [D′
N] = [D′] ∩ [DN] and define

HN =

{
N∑
n=1

ϕ(yn)k(• , xn) : [(xn, yn)
N
n=1] ⊆ [D′

N]

}
⊆ HK+1. (B.33)

Then (HN)
Nmax
N=0 are pairwise disjoint. Denote H′ =

⋃Nmax
N=0 HN . Then

enc : [D′]→ H′, enc([D]) = encN([D]) if [D] ∈ [DN] (B.34)

is a homeomorphism.

184

Proof. To begin with, we show that (HN)
Nmax
N=0 are pairwise disjoint. To this end, suppose

that
N∑
n=1

ϕ(yn)k(• , xn) =
N ′∑
n=1

ϕ(y′n)k(• , x
′
n) (B.35)

for N ̸= N ′. Then, by arguments like in the proof of Lemma B.1,

N∑
n=1

ϕ(yn) =
N ′∑
n=1

ϕ(y′n). (B.36)

Since ϕ1(•) = 1, this gives N = N ′, which is a contradiction.

Second, we show that enc is a homeomorphism. Note that (HN)
Nmax
N=0 are closed and pairwise

disjoint, and that ([D′
N])

Nmax
N=0 are also closed and pairwise disjoint. By Lemma B.2, every

enc|[D′
N] : [D′

N]→ HN (B.37)

is a homeomorphism. Therefore,

enc :
Nmax⋃
N=0

[D′
N]→

Nmax⋃
N=0

HN (B.38)

is also a homeomorphism: invertibility follows from disjointness, continuity of enc follows
from the pasting lemma (Theorem 18.3; Munkres, 2000), and continuity of enc−1 similarly
follows from the pasting lemma.

Theorem 4.8 (Convolutional deep set). Let Y ⊆ R be compact. Suppose that [D′] ⊆ [D] is
closed, is closed under translations, has multiplicityK , and has maximum data set sizeN <∞.

Let k : X → R be a continuous strictly-positive-definite function such that (1) k(0) = σ2 > 0

(2) k ≥ 0, and (3) k(τ)→ 0 as |τ | → ∞. Denote the reproducing kernel Hilbert space of k by

H. Let Z be a translation space. Then a function π : [D′]→ Z is continuous and translation

equivariant if and only if it is of the form

π = dec ◦ enc where enc(D) =
∑

(x,y)∈D

ϕ(y)k(• − x) (B.39)

with enc : [D′]→ H′ continuous and translation equivariant, dec : H′ → Z continuous and

translation equivariant, and ϕ(y) = (0, y1, . . . , yK). Here H′ = enc([D′]) is a subspace of

HK+1 which is closed and closed under translations.

Proof. Our proof follows the strategy used by Zaheer et al. (2017). If π is of the stated form,
then it is continuous and translation equivariant as a composition of two continuous and

185

translation-equivariant functions. Note that continuity of enc follows from Lemma B.3, and
that translation equivariance of enc is easily verified. Conversely, suppose that π : [D′]→ Z

is continuous and translation equivariant. Let enc be of the stated form. By Lemma B.3, enc
is a homeomorphism. Set dec = π ◦ enc−1. Then enc is continuous, and dec is continuous
as a composition of two continuous functions. Moreover, enc is translation equivariant
by construction, and dec is translation equivariant as a composition of two translation
equivariant functions.

B.3 Proofs for Section 4.5

Theorem 4.9 (Convolutional deep set for DTE). Let Y ⊆ R be compact. Suppose that

[D′] ⊆ [D] is closed, is closed under translations, has multiplicity K , and has maximum data

set size N <∞. Let k : X × X → R be a continuous strictly-positive-definite function such

that (1) k(0) = σ2 > 0, (2) k ≥ 0, and (3) k(τ)→ 0 as ∥τ∥2 →∞. Denote the reproducing

kernel Hilbert space associated to k by H. Let Z be a topological (X × X)-translation space.

Let C be another topological (X × X)-translation space, let c ∈ C be diagonally translation

invariant and anti-diagonal discriminating, and denote C ′ = {Tτc : τ ∈ X × X}. Then a

function π : [D′]→ Z is continuous and diagonally translation equivariant in the sense of

π ◦ Tτ = T(τ,τ) ◦ π for all τ ∈ X (B.40)

if and only if it is of the form

π = dec ◦ enc where enc(D) =

[∑
(x,y)∈C ϕ(y)k(• − (x, x))

c

]
(B.41)

with enc : [D′] → H′ × C ′ continuous and translation equivariant, dec : HK+1 → Z con-

tinuous and translation equivariant, and ϕ(y) = (0, y1, . . . , yK). Here H′ = enc([D′]) is a

subspace of HK+1 which is closed and closed under translations.

Addendum to proof. The proof in Section 4.5 is nearly complete. The only thing which
remains is to show that the extension π : A× {Tτc : τ ∈ X × X} → Z is continuous. To
this end, consider a sequence (ai, Tτi

c)i≥1 convergent to (a, Tτc). Let e∥ = (1, 1)/
√
2 and

e⊥ = (1,−1)/
√
2. Denote τi,∥ = ⟨τi, e∥⟩e∥ and τi,⊥ = ⟨τi, e⊥⟩e⊥. Then

π(ai, Tτi
c)

(i)
= π(ai, Tτi,⊥c)

(ii)
= Tτi,⊥π(T−τi,⊥ai, c)

(iii)
= Tτi,⊥π(T−τi,⊥ai, c) (B.42)

using in (i) that c is diagonally translation invariant, in (ii) that π is TE, and in (iii) the
definition of π. Because c is anti-diagonal discriminating, (τi,⊥)i≥1 is convergent. Note

186

that (τ, a) 7→ T−τa and (τ, z) 7→ Tτz are continuous because A and Z are topological
(X × X)-translation spaces. Therefore, using continuity of π,

lim
i→∞

π(ai, Tτi
c) = Tτ⊥π(T−τ⊥ai, c) = π(a, Tτc) (B.43)

where the latter equality reverses the steps in (B.42).

187

C | Proofs for Chapter 5

C.1 Proofs for Section 5.3

Proposition 5.2. The ground-truth stochastic process f is stationary if and only if the posterior

prediction map πf is translation equivariant (Definition 2.4).

Proof. Suppose that the ground-truth stochastic process f is stationary: f d
= Tτf for all

τ ∈ X . Let D ∈ D and τ ∈ X . Let µf denote the law of f , and let π′(D) denote the
Radon–Nikodym of πf (D) with respect to µf (Definition 3.6). From Definition 3.6 and
stationarity of f , it is clear that π′(TτD) = π′(D) ◦ T−τ . Let B be a cylinder set. Then, by
the changes-of-variables formula for pushforward measures (Theorem 14.1; Schilling, 2005),∫

B

π′(TτD) dµf =

∫
B

π′(D) ◦ T−τ dµf (C.1)

=

∫
T−τ (B)

π′(D) dT−τ (µf) (change of variables) (C.2)

=

∫
T−1
τ (B)

π′(D) dµf . (f is stationary and T−τ = T−1
τ) (C.3)

We conclude that πf is translation equivariant (Definition 2.4). Conversely, if πf is translation
equivariant, then

Tτπf (∅) = πf (Tτ∅) = πf (∅) for all τ ∈ X . (C.4)

Since πf (∅) = µf , this means that f is stationary.

If we just assume that f is stationary and πf is translation equivariant, then we can prove
that π′(TτD) = π′(D) ◦ T−τ µf–almost surely. Let B be a cylinder set. Then∫

B

π′(TτD) dµf =

∫
T−1
τ (B)

π′(D) dµf (πf is translation equivariant) (C.5)

=

∫
T−τ (B)

π′(D) dT−τ (µf) (T−1
τ = T−τ and f is stationary) (C.6)

=

∫
B

π′
P (D) ◦ T−τ dµf . (change of variables) (C.7)

Since this holds for all cylinder sets, π′(TτD) = π′(D)◦T−τ µf–almost surely. Therefore, we
have actually proven the stronger statement that πf is stationary if and only if f is stationary

188

and π′(TτD) = π′(D) ◦ T−τ µf–almost surely. However, for the current exposition, this
generality is unnecessary, because we assume the form of π′ in Definition 3.6.

Proposition 5.3. If a prediction map π is translation equivariant, then the mean mapmπ

and variance map vπ are also translation equivariant. Conversely, suppose that π a conditional

neural process in the sense of Definition 3.22. Ifmπ is TE and vπ is TE, then π is translation

equivariant.

π is TE
=⇒

π is a CNP⇐=
mπ is TE and vπ is TE. (C.8)

Proof. “⇒”: Let D ∈ D and τ ∈ X . Then

mπ(TτD)(x) = Eπ(TτD)[f(x)] (Definition 3.18) (C.9)

= ETτπ(D)[f(x)] (translation equivariance of π) (C.10)

= Eπ(D)[f(x− τ)] (change of variables) (C.11)

= mπ(D)(x− τ). (Definition 3.18) (C.12)

The proof for vπ is similar. “⇐”: A conditional neural process π in the sense of Definition 3.22
is characterised bymπ and vπ (Section 3.4). Namely, let D ∈ D, x ∈ IN . Then

Pxπ(D) = N

m(D)(x1)

...
m(D)(xN)

 ,

v(D)(x1) 0

.
0 v(D)(xN)

. (C.13)

Therefore, ifmπ and vπ are translation equivariant, then π(D) is translation equivariant.

C.2 Proofs for Section 5.4

Theorem 5.7. Let π1, π2 : D → P be translation-equivariant prediction maps with receptive

field R > 0. Assume that, for all D ∈ D, π1(D) and π2(D) also have receptive field

R > 0. Let ε > 0 and fix N ∈ N. Assume that, for all x ∈
⋃N
n=1[0, 2R]

n and D ∈
D ∩

⋃∞
n=0([0, 2R]× R)n,

KL(Pxπ1(D), Pxπ2(D)) ≤ ε. (C.14)

Then, for allM > 0, x ∈
⋃N
n=1[0,M]n, and D ∈ D ∩

⋃∞
n=0([0,M]× R)n,

KL(Pxπ1(D), Pxπ2(D)) ≤ ⌈2M/R⌉ε. (C.15)

Proof. The proof follows the intuition from Figure 5.1. Let M > 0, n ∈ {1, . . . , N},

189

x ∈ [0,M]n, andD ∈ D∩
⋃∞
n=0([0,M]×R)n. Sort and put then inputsx intoB =

⌈
M/1

2
R
⌉

buckets (Bi)
B
i=1 such that xj ∈ [(i− 1) · 1

2
R, i · 1

2
R] for all j ∈ Bi. More concisely written,

xBi
∈ [(i− 1) · 1

2
R, i · 1

2
R]|Bi|. Write Ci =

⋃i−1
j=1Bi. Let Di be the subset of D with inputs

in [min(xBi−2
),max(xBi+1

)].

If y1 ⊕ y2 ∼ P σ
x1⊕x2

π(D), then denote the distribution of y1 |y2 by P σ
x1 |x2

π(D). Use the
chain rule for the KL divergence to decompose

KL(P σ1
x π1(D), P σ2

x π2(D))

=
B∑
i=1

EPσ1
xCi

π1(D)[KL(P σ1
xBi

|xCi
π1(D), P σ2

xBi
|xCi

π2(D))]. (C.16)

We focus on the ith term in the sum. Using that π1(D) and π2(D) have receptive field R,
we may drop the dependency on B1, . . . , Bi−2:

KL(P σ1
xBi

|xCi
π1(D), P σ2

xBi
|xCi

π2(D)) = KL(P σ1
xBi

|xBi−1
π1(D), P σ2

xBi
|xBi−1

π2(D)) (C.17)

Therefore,

EPσ1
xCi

π1(D)[KL(P σ1
xBi

|xCi
π1(D), P σ2

xBi
|xCi

π2(D))]

= EPσ1
xBi−1

π1(D)[KL(P σ1
xBi

|xBi−1
π1(D), P σ2

xBi
|xBi−1

π2(D))] (C.18)

≤ KL(P σ1
xBi∪Bi−1

π1(D), P σ2
xBi∪Bi−1

π2(D)). (C.19)

Next, we use that π1 and π2 also have receptive field R, allowing us to replace D with Di:

KL(P σ1
xBi∪Bi−1

π1(D), P σ2
xBi∪Bi−1

π2(D)) = KL(P σ1
xBi∪Bi−1

π1(Di), P
σ2
xBi∪Bi−1

π2(Di)). (C.20)

Finally, we use translation equivariance to shift everything back to the origin. Let τi be
min(xBi−2

). By translation equivariance of π1,

P σ1
xBi∪Bi−1

π1(Di) = P σ1
xBi∪Bi−1

Tτiπ1(T−τiDi) = P σ1
xBi∪Bi−1

−τiπ1(T−τiDi) (C.21)

where by xBi∪Bi−1
− τi we mean subtraction elementwise. Crucially, note that all elements

of xBi∪Bi−1
− τi and all inputs of T−τiDi lie in [0, 4 · 1

2
R]. We have a similar equality for π2.

Putting everything together,

EPσ1
xCi

π1(D)[KL(P σ1
xBi

|xCi
π1(D), P σ2

xBi
|xCi

π2(D))]

≤ KL(P σ1
xBi∪Bi−1

−τiπ1(T−τiDi), P
σ2
xBi∪Bi−1

−τiπ2(T−τiDi)), (C.22)

190

which is less than ε by the assumption of the theorem. The conclusion now follows.

C.3 Proofs for Section 5.5

Proposition 5.11. If a prediction map π is translation equivariant, then the mean map

mπ is translation equivariant and the kernel map kπ is diagonally translation equivariant.

Conversely, suppose that π is a Gaussian neural process in the sense of Definition 3.23. Ifmπ is

TE and kπ is DTE, then π is translation equivariant. In formulas,

π is TE
=⇒

π is a GNP⇐=
mπ is TE and kπ is DTE. (C.23)

Proof. “⇒”: Follows from “⇒” of Proposition 5.3, noting that TE of vπ implies DTE of kπ.
“⇐”: Exactly like the proof for “⇐” of Proposition 5.3, now using DTE of kπ rather than TE
of vπ.

C.4 Proofs for Section 5.6

Proposition 5.15 (Advantage of AR CNPs). Let (πC, σC) be a CNPA and let (πG, σG) be the

GNPA. Then, for all x ∈ I and D ∈ D̃ (see Section 3.2),

KL(P
σf
x πf (D),ARσC

x (πC, D)) ≤ KL(P
σf
x πf (D), P σG

x πG(D)). (C.24)

Proof. Use the notation P σ
x1 |x2

π from the proof of Theorem 5.7. We will argue that, for all
n = 1, . . . , |x|,

KL(P
σf
xn |x1:(n−1)

πf (D), P σC
xnπC(D ⊕ (x1:(n−1),y1:(n−1))))

≤ KL(P
σf
xn |x1:(n−1)

πf (D), P σG
xn |x1:(n−1)

πG(D)) (C.25)

where y1:(n−1) is the realisation for inputs x1:(n−1) on which the KL divergences are condi-
tioned. Assuming this inequality, the result follows from the chain rule for the KL divergence
in combination with the definition of ARσC

x (Procedure 5.14). To prove the inequality, note
that, conditional on y1:(n−1),

argmin
µG∈P1

λ,G

KL(P
σf
xn |x1:(n−1)

πf (D), µ) = N (P
σf
xn |x1:(n−1)

πf (D)). (C.26)

191

See the proof of Proposition 3.27 for the definition of P1
λ,G and the argument for (C.26).

But, by Proposition 3.26, this is exactly what P σC
xnπC(D ⊕ (x1:(n−1),y1:(n−1))) is! Since

P σG
xn |x1:(n−1)

πG(D) ∈ P1
λ,G, the inequality follows.

Proposition 5.16 (Recovery of smooth samples). Let X ⊆ R be compact, and let f be

a stochastic process with surely continuous sample paths and supx∈X∥f(x)∥L2 < ∞. Let

(εn)n≥0 be i.i.d. random variables such that E[ε0] = 0 and var(ε0) < ∞. Consider any

sequence (xn)n≥1 ⊆ X , and let x∗ ∈ X be a limit point of (xn)n≥1, assuming that a limit

point exists. If y(x∗) = f(x∗) + ε0 and yn = f(xn) + εn are noisy observations of f , then

lim
n→∞

E[y(x∗) | y1, . . . , yn] = f(x∗) almost surely. (C.27)

Proof. Consider the increasing filtration Fn = σ(y1, . . . , yn) with limit F∞ = σ(
⋃∞
n=1Fn).

Also let Tn = σ(εn+1, εn+2, . . .) and consider the tail σ-algebra T =
⋂∞
n=1 Tn. Let (xni

)∞i=1

be a subsequence of (xn)∞n=1 such that xni
→ x∗. Let gn = 1

n

∑n
i=1 yi. Since gn is a function

of y1, . . . , yn, it is Fn–measurable and therefore F∞–measurable. Note that

gn =
1

n

n∑
i=1

f(xni
) +

1

n

n∑
i=1

εi. (C.28)

By sure continuity of f , the first term converges to f(x∗) surely. By the strong law of large
numbers (Example 5.6.1; Durrett, 2010), the second term converges to zero on a tail event
A ∈ T of probability one. We conclude that 1Af(x∗) is σ(F∞, T)–measurable. Therefore,
by almost sure convergence of L2–bounded martingales (Theorem 5.4.5; Durrett, 2010),

lim
n→∞

E[y(x∗) | y1, . . . , yn] = lim
n→∞

E[f(x∗) | y1, . . . , yn] (E[ε0] = 0) (C.29)

= lim
n→∞

E[f(x∗) | Fn] (definition of Fn) (C.30)

= lim
n→∞

E[f(x∗) | Fn, T] (σ(f(x∗),Fn) ⊥ T) (C.31)

= lim
n→∞

E[1Af(x∗) | Fn, T] (P(A) = 1) (C.32)

= E[1Af(x∗) | F∞, T] (L2–mart. convergence) (C.33)

= 1Af(x
∗) (1Af(x∗) ∈ σ(F∞, T)) (C.34)

= f(x∗), (P(A) = 1) (C.35)

where all equalities hold almost surely.

192

D | Behind the Scenes
of the ConvCNP

Attributions. Connecting the discretisation of the ConvCNP to inducing points of a sparse
Gaussian process was first suggested by TomMinka. TomMinka also suggested using the Jac-
obi method to approximate the inverse. These suggestions were worked out in more detail by
the author in collaboration with Stratis Markou, James Requeima, and Anna Vaughan.

D.1 Introduction

Although the ConvCNPworkswell in practice, themodel remains a black box. In this chapter,
we attempt to improve our understanding of what could be going on inside a ConvCNP.
We will explicitly construct a convolutional deep set (Theorem 4.8) that approximates the
posterior mean of a Gaussian process with a stationary kernel. This draws a connection
between ConvCNPs and Gaussian processes and gives one possible explanation of what
could be going on inside.

To approximate the posterior mean of a Gaussian process with a ConvCNP, the idea is to
consider a sparse approximation of a Gaussian processes (Titsias, 2009) with inducing point
locations equal to the discretisation of the convolutional deep set (Procedure 5.5).

Let k : X × X → R be a stationary kernel and consider f ∼ GP(0, k). Let t ∈ I be target
inputs, and let (x,y) ∈ DN be context data observed under Gaussian noise with variance
one. Consider inducing point locations z ∈ XM . Then the sparse approximation of the
posterior mean is given by

E[f(t) |y] ≈ Ktz(Kz +KzxKxz)
−1Kzxy (D.1)

where Ktz = k(t, z), Kz = k(z, z), Kzx = k(z,x), and Kxz = k(x, z). See (6) and (10)
by Titsias (2009). In this chapter, we will argue that (D.1) can be approximated with a
convolutional deep set.

193

D.2 Construction of a Convolutional Deep Set

Set the inducing point locations z to positions equally spaced over some interval [a, b] with
interpoint spacing ∆. For simplicity, assume that the inputs of the observations x are all
distinct. Moreover, assume that every input of an observation is equal to some inducing
point location; that is, every element of x is some element of z. Consider a convolutional
deep set (Theorem 4.8) implemented according Procedure 5.5. In Procedure 5.5, set the
discretisation equal to z. Let cy denote the discretised data channel and c1 the discretised
density channel of the convolutional deep set (see (5.4) and (5.5)).

In the encoder enc of the convolutional deep set, assume that the length scale of the
Gaussian kernel is infinitesimally small. Then, by the assumptions on the inputs of the
observations,

cy,m =

yn if zm = xn,

0 otherwise,
c1,m =

1 if zm = xn,

0 otherwise,
(D.2)

for all m = 1, . . . ,M . Therefore, Kzxy = Kzcy. This reveals a first connection between
(D.1) and a discretised convolutional deep set:

Ktz(Kz +KzxKxz)
−1Kzxy = Ktz

smoothing

CNN

(Kz +KzxKxz)
−1Kz cy

data channel

. (D.3)

The sparse approximation of the posterior mean starts out with the data channel cy , performs
some matrix multiplications (Kz+KzxKxz)

−1Kz, and ends with a matrix multiplication by
Ktz. If we replace the Gaussian kernel in step 4 of Procedure 5.5 with k, then multiplication
byKtz exactly performs step 4 . Therefore, if we can implement the intermediate matrix
multiplications with a convolutional neural network (CNN), the sparse approximation of
the posterior mean can be implemented with a convolutional deep set discretised according
to Procedure 5.5.

To begin with, since k is stationary and the elements of z are equally spaced, Kz is a
Toeplitz matrix, and matrix multiplication with a Toeplitz matrix can be implemented
with a convolutional filter. Therefore, multiplication by Kz can be implemented with a
convolutional filter. It remains to argue that multiplication by (Kz +KzxKxz)

−1 can be
approximated with a CNN.

Let v = (Kz+KzxKxz)
−1u and splitKz = D+O into a diagonal partD and off-diagonal

part O. Rearrange
v = D−1(u−Ov −KzxKxzv). (D.4)

194

This suggests the iterative scheme

vr+1 =

diag. matrix = filter

D−1(u−O
Toeplitz matrix = filter

vr −KzxKxzvr). (D.5)

This iterative scheme is known as the Jacobi method. Note that multiplication by D−1

and multiplication by O can both be implemented with convolutional filters. Therefore,
if KzxKxzvr can also be approximated with convolutional filters, then rolling out the
iterative scheme suggests that multiplication by (Kz +KzxKxz)

−1 can be implemented
with a multi-layer CNN. The last piece of the puzzle is therefore to figure out whether
KzxKxzvr can be approximated with convolutional filters. And it is here that the density
channel comes into play.

Let dm be themth diagonal of the matrixKzxKxz. Then

KzxKxzvr =
M∑

m=−M

dm ⊙ T−mvr (D.6)

where⊙ denotes theHadamard product and Tm denotes shifting elementwise bym positions,
discarding what falls off: Tmx = x1+m:|x| if m ≥ 0 and Tmx = x1:|x|+m otherwise. Note
that the Hadamard product can be approximated with a pointwise multi-layer perceptron
(MLP), and that elementwise shifts can be implemented exactly with convolutional filters.
To compute dm, using stationarity of k,

dm,m′ =
N∑
n=1

k(um′ − xn)k(xn − (um′ +m∆)) =
N∑
n=1

wm(um′ − xn) (D.7)

where wm(τ) = k(τ)k(τ −m∆). Therefore, denotingWm = wm(z− zT), which is again
a Toeplitz matrix, we find dm = Wmc1. We conclude that

KzxKxzvr =
M∑

m=−M

dm ⊙ T−mWmc1, (D.8)

which can be approximated with convolutional filters and pointwise MLPs.

D.3 Conclusion

By connecting the inducing point locations of a sparse Gaussian process to the discretisation
of a convolutional deep set, we were able to explicitly approximate the posterior mean of
a Gaussian process with a discretised convolutional deep set. Both the data channel and

195

the density channel played an important role. The data channel communicated the values
of the observations, and the density channel was necessary to appropriately calibrate the
uncertainty according to the inputs of the observations. We leave it for future work to
further work out this connection between ConvCNPs and Gaussian processes.

196

E | Experimental Details

E.1 Description of Models

The architectures follow the descriptions from Chapter 5. Although these descriptions are
for one-dimensional inputs and outputs, the architectures are readily generalised to multi-
dimensional inputs and outputs; we will explicitly mention wherever that generalisation
requires extra care. All architectures use ReLU activation functions. All Gaussian neural
processes (GNPs; Section 5.5), in addition to a covariance matrix over the target points, also
output heterogeneous observation noise along the marginal means; the total covariance
over the target points is thus the sum of kθ(D) and a diagonal matrix formed from these
observation noises.

Conditional Neural Process (CNP; Garnelo et al., 2018a). The architecture follows
Model 5.1. Set the dimensionality of the encoding to K = 256. Parametrise ϕθ with a
three-hidden-layer multi-layer perceptron (MLP) of width 256; and parametrise decθ with
a six-hidden-layer MLP of width 256. For multidimensional outputs, let decθ have width
512. For multidimensional outputs where outputs can have context points at different
inputs, produce a separate encoding for every output and concatenate these into one big
encoding. These encoders may or may not share parameters. In our experiments, for
two-dimensional outputs, parametrise separate encθ; for higher-dimensional outputs, apply
the same encθ.

Gaussian Neural Process (GNP; Model 5.9). The architecture follows Model 5.1. Use
the same choices forK , ϕθ, and decθ as the CNP. Set the rank of the kernel map to R = 64.
As mentioned in the introduction, let decθ produce one extra dimension which forms
heterogeneous observation noise; the total covariance over the target points is then the sum
of kθ(D) and a diagonal matrix formed from these observation noises. For multidimensional
outputs, the same caveats as for the CNP apply.

Neural Process (NP; Garnelo et al., 2018b). The NP builds off the CNP. Call the ex-
isting encoder encθ the deterministic encoder. The NP adds one more encoder called the
stochastic encoder. The stochastic encoder mimics the deterministic encoder, but outputs a
K-dimensional vector of means and aK-dimensional vector of marginal variances. These
are used to sample aK-dimensional Gaussian latent variable (the stochastic encoding). The

197

decθ now additionally takes in the stochastic encoding. For multidimensional outputs, the
same caveats as for the CNP apply.

Attentive Conditional Neural Process (ACNP; Kim et al., 2019). The ACNP builds off
the CNP. It replaces the deterministic encoder encθ : D → RK with an eight-head attentive
encoder enc(att)θ : D × X → RK (Bahdanau et al., 2015; Vaswani et al., 2017). Unlike the
original deterministic encoder encθ, the new attentive encoder enc(att)θ also takes in the
target input. Let D(c) = (x(c),y(c)) ∈ DN be a context set and let x(t) ∈ X be a target input.
We now descibe the computation of enc(att)θ (D(c), x(t)). Parametrise ϕx : X → (R32)8 and
ϕxy : X × Y → (R32)8 both with three-hidden-layer MLPs of width 256. Compute

the keys: (kh,n)
8
h=1 = ϕx(x

(c)
n) for n = 1, . . . , N, (E.1)

the values: (vh,n)
8
h=1 = ϕxy(x

(c)
n , y

(c)
n) for n = 1, . . . , N, (E.2)

the query: (qh)
8
h=1 = ϕx(x

(t)). (E.3)

Then compute

v
(q)
h =

N∑
n=1

e⟨qh,kh,n⟩∑N
n′=1 e

⟨qh,kh,n′ ⟩
vh,n ∈ R256 (E.4)

Concatenate v(q) = (v
(q)
1 , . . . ,v

(q)
8) ∈ R256 and q = (q1, . . . ,q8) ∈ R256. Let L : R256 →

R256 be a linear layer; letϕ(res) : R256 → R256 be a one-hidden-layerMLP ofwidth 256; and let
norm1 and norm2 be two layer normalisation layers with learned pointwise transformations
(Ba et al., 2016). Then

enc(att)θ (D(c), x(t)) = norm2(z+ ϕ(res)(z)) where z = norm1(v
(q) + Lq). (E.5)

For multidimensional outputs, the same caveats as for the CNP apply.

Attentive Gaussian Neural Process (AGNP; Section 5.5). The AGNP builds off the GNP
It replaces the deterministic encoder with the eight-head attentive deterministic encoder of
the ACNP.

Attentive Neural Process (ANP; Kim et al., 2019). The ANP builds off the NP. It
replaces the deterministic encoder with the eight-head attentive deterministic encoder of
the ACNP.

Convolutional Conditional Neural Process (ConvCNP; Model 5.4). The architecture
follows Model 5.4 and performs the discretisation approach outlined by (5.5). Set the
discretisation to an evenly spaced grid at a certain density (the points per unit) spanning a
bit more (the margin) than the most extremal context and target inputs. The points per unit
and margin are specified separately for every experiment. Initialise the length scales of all

198

Gaussian kernels to twice the interpoint spacing of the discretisation. Do divide the data
channel by the density channel, as described in Section 5.3. Parametrise decθ with a U-Net
(Ronneberger et al., 2015). Before the U-turn, let the U-Net have six convolutional layers
with kernel size five, stride two, and 64 output channels; and six more such layers, but using
transposed convolutions, after the U-turn. The layers after the U-turn additionally take in
the outputs of the layers before the U-turn in reversed order; this is the U-net structure
(Figure 1; Ronneberger et al., 2015). For multidimensional outputs where outputs can have
context points at different inputs, produce a separate data and density channel for every
output and concatenate these into one big encoding; use separate length scales for every
application of encθ.

Convolutional Gaussian Neural Process (ConvGNP; Model 5.12). The architecture
follows Model 5.12. Use the same choices for the discretisation, length scales, and CNN
architecture as for the ConvCNP. Set the rank of the kernel map toR = 64. As mentioned in
the introduction, let decθ produce one extra channel which forms heterogeneous observation
noise; the total covariance over the target points is then the sum of kθ(D) and a diagonal
matrix formed from these observation noises. For multidimensional outputs, the same
caveat as for the ConvCNP applies.

Fully Convolutional Gaussian Neural Process (FullConvGNP; Model 5.13). For the
mean architecture and the kernel architecture, use the same choices for the discretisation,
length scales, and CNN architecture as for the ConvCNP. Do implement the source channel
with the identity matrix, as described in Section 5.5; and do apply the matrix transform Z 7→
ZZT to ensure positive definiteness, as also described in Section 5.5. As mentioned in the
introduction, let dec(m)

θ produce one extra channel which forms heterogeneous observation
noise; the total covariance over the target points is then the sum of kθ(D) and a diagonal
matrix formed from these observation noises. For multidimensional outputs, in addition
to the caveat for the ConvCNP, two additional caveats apply. First, for Do-dimensional
outputs, let dec(k)θ produce D2

o channels rather than just one. These channels should be
interpreted as all covariance and cross-covariance matrices between all outputs. Second,
when applying the matrix transform Z 7→ ZZT, these channels should first be assembled
into one total covariance matrix.

Convolutional Neural Process (ConvNP; Foong et al., 2020). The ConvNP builds off
the ConvCNP. The ConvNP replaces the CNN architecture by two copies of this architecture
placed in sequence. Inbetween the two architectures, there is a sampling step: the first
architecture outputs 32 channels, comprising 16 means and 16 marginal variances, which
are used to sample a 16-dimensional Gaussian latent variable; and the second architecture
then takes in this sample.

199

Autoregressive Conditional Neural Processes (AR CNPs; Section 5.6). The AR CNP,
AR ACNP, and AR ConvCNP use the architectures described above. Rolling out an AR CNP
according to Procedure 5.14 requires an ordering of the target points. In all experiments,
we choose a random ordering of the target points.

E.2 Training, Cross-Validation, and Evaluation
Protocols

A task consists of a context set and target set (Section 2.1). How precisely the context
and target sets are generated is specific to an experiment. To train a model, we consider
batches of 16 tasks at a time, compute an objective function value, and update the model
parameters using ADAM (Kingma et al., 2015). The learning rate is specified separately for
every experiment. We define an epoch to consist of 214 ≈ 16 k tasks. We typically train a
model for between 100 and 500 epochs.

For an experiment, we split up the meta–data set into a training set, a cross-validation set,
and an evaluation set. The model is trained on the training set. During training, after every
epoch, the model is cross-validated on the cross-validation set. Cross-validation uses 212

fixed tasks. These 212 are fixed, which means that cross-validation always happens with
exactly the same data. The cross-validation objective is a confidence bound computed from
the model objective. Suppose that model objective over all 212 cross-validation tasks has
empirical mean µ̂ and empirical variance σ̂2. If a higher model objective is better, then
the cross-validation objective is given by µ̂ − 1.96 · σ̂/

√
212. The model with the best

cross-validation objective is selected and used for evaluation. Evaluation is performed with
the evaluation set and also uses 212 tasks.

Conditional neural processes and Gaussian neural processes are trained, cross-validated,
and evaluated with the neural process objective proposed by Garnelo et al. (2018a), (2.2) in
Section 2.2. We normalise the terms in the neural process objective by the target set sizes.
Latent-variable neural processes (LNPs) are trained, cross-validated, and evaluated with
the ELBO objective proposed by Garnelo et al. (2018b) using five samples, also normalised
by the target set size. When training LNPs with the ELBO objective, but not when cross-
validating and evaluating, the context set is subsumed in the target set. Additionally, LNPs
are trained, cross-validated, and evaluated with the ML objective proposed by Foong et al.
(2020), again normalised by the target set size. When training and cross-validating LNPs
with the ML objective, we use twenty samples; and when evaluating, we use 512 samples.
For completeness, LNPs trained with the ELBO objective are also evaluated with the ML
objective using 512 samples.

200

To stabilise the numerics for GNPs, we increase the regularisation of covariance matrices
for one epoch. To encourage LNPs to fit, we fix the variance of the observation noise of the
decoder to 10−4 for the first three epochs.

E.3 Synthetic Experiments

For this experiment, the learning rate is 3 · 10−4, the margin is 0.1, and the points per unit is
64. We trained the models for 100 epochs. Due to an error in the cross-validation procedure,
we did not use cross-validation, but used the model at epoch 100.

For the kernel architecture of the FullConvGNP, we reduce the points per unit and the
number of channels in the U-Net by a factor two. For the ConvNP with two-dimensional
inputs, we reduce the number of outputs channels in the U-Net by a factor

√
2; and, for

training and cross-validation, we reduce the number of samples of the ELBO objective to
one and the number of samples for the ML objective to five.

E.4 Sim-to-Real Transfer with the Lotka–Volterra
Equations

For this experiment, the learning rate is 1 · 10−4, the margin is 1, and the points per unit is
4. We trained the models for 200 epochs.

The convolutional models use a U-Net architecture with seven layers instead of six where, in
the first layer, the stride is one instead of two. For the kernel architecture of the FullConvGNP,
we reduce the points per unit and the number of channels in the U-Net by a factor two.

E.5 Electroencephalography Experiments

For this experiment, the learning rate is 2 · 10−4, the margin is 0.1, and the points per
unit is 256. We trained the models for 200 epochs. The training runs for the ANPs and
FullConvGNP were terminated after 45 hours; these models all reached epoch 80–120.

The convolutional models use a U-Net architecture where, in the first layer, the stride is one
instead of two. In addition, the number of channels are adjusted as follows: the ConvCNP
and ConvGNP use 128 channels, the ConvNP uses 96 channels, and the FullConvGNP
uses 64 channels. The length scales of the Gaussian kernels of the convolutional model is
initialised to 0.77/256. To scale to seven outputs, the deep set–based and attentive models
reuse the same encoder for every output dimension.

201

E.6 Climate Downscaling

MLP ConvCNP and MLP ConvGNP (Section 6.5; Vaughan et al., 2022). The archi-
tectures of the MLP ConvCNP and MLP ConvGNP follow the description in Section 6.5,
with the following additional details. The decoder decθ = fuseθ ◦ dec′θ is decomposed
into a convolutional architecture dec′θ followed by a pointwise MLP fuseθ (Definition 6.1).
Parametrise dec′θ with a seven-layer residual convolutional neural network (He et al., 2016).
Every residual layer involves one depthwise-separable convolutional filter (Chollet, 2017)
with kernel size three followed by a pointwise MLP. Every layer has 128 channels, and the
network also outputs 128 channels. The discretisation for dec′θ is the grid of the ERA-Interim
reanalysis variables. Parametrise fuseθ with a three-hidden-layer MLP of width 128.

The MLP ConvCNP and MLP ConvGNP are trained with learning rate 2.5 · 10−5 for 500
epochs. For the MLP ConvGNP, to encourage the covariance to fit, we fix the variance of
the decoder to 10−4I for the first ten epochs.

AR ConvCNP (Section 6.5). The architecture of the AR ConvCNP follows the descriptions
in Section 6.5 and Figure 6.12, with the following additional details. Parametrise CNNlr with
a depthwise-separable residual convolutional neural network like in the MLP ConvCNP
and MLP ConvGNP, but use six layers instead of seven. Let CNNlr output 64 channels. The
discretisation for CNNlr is the grid of the ERA-Interim reanalysis variables. Parametrise
CNNmr with a U-Net (Ronneberger et al., 2015) using an architecture similar to what we
have been using. Before the U-turn, let the U-Net have five convolutional layers with kernel
size five, stride one for the first layer and stride two afterwards, 64 output channels for
the first three layers and 128 output channels afterwards. After the U-turn, instead of
using transposed convolutions, use regular convolutions combined with an upsampling
layer using bilinear interpolation. Let CNNmr output 64 channels. The receptive field of
CNNmr is approximately 10◦. The discretisation for CNNmr is centred around the target
points with margin 5◦. Parametrise CNNhr with a U-Net like for CNNhr, but with four
convolutional layers before the U-turn. The receptive field of CNNhr is approximately 0.5◦.
The discretisation for CNNhr is centred around the target points with margin 0.25◦.

The AR ConvCNP is trained with learning rate 1 · 10−5 for 500 epochs. During training and
cross-validation, the target points are subsampled to lie in a 3◦ × 3◦ square. For training,
the number of target points is ensured to be at least ten; and for cross-validation, at least
one. The size of the cross-validation set is increased ten fold.

Fusion experiments. The number of context points n is sampled from p(n) ∝ e−0.01n.
A data set is split into a context and target set by randomly selecting n points as context
points and letting the remainder be target points. For the AR ConvCNP, this splitting is

202

done after subsampling the 3◦ × 3◦ square.

203

Index
ACNP, 198
AGNP, 198
ANP, 198
anti-diagonal discriminating, 63
Arzelà–Ascoli theorem, 44

CNP, 67, 197
implementation, 140

coder, 139
composition, 139

compactness, 42
consistency

convergence, 42
probabilistic, 15, 80, 83

context set, 15
ConvCNP, 68, 198

implementation, 142
MLP, 126, 202

ConvGNP, 76, 199
MLP, 126, 202

ConvNP, 199
convolutional deep set, 57, 60, 68, 76, 77

comparison, 63

data channel, 69
data sets of interest, 32, 44
decoder, 22, 50, 67, 136
deep set, 53, 54, 67, 74

comparison, 63
density channel, 69
discretisation, 70, 78
downscaling, 123, 202

eigenmap, 74
empirical neural process objective, 31

encoder, 22, 50, 67, 136
encoder–decoder architecture, 22, 50, 67,

136, 140
encoding, 22, 50, 67

functional, 56

few-shot classification, 15
FullConvGNP, 77, 199
functional encoding, 69, 137

generalisation, 71, 73
GNP, 75, 197
ground truth, 28

regularity, 33

kernel, 58, 60
compact, 73

kernel map, 38, 74, 77
Kolmogorov’s extension theorem, 16, 33

learning to learn, 2, 4, 6
Lotka–Volterra equations, 116

mean map, 38, 66, 74, 77
Mercer’s theorem, 75
meta-learning, 2, 4, 15
meta-learning algorithm, 15
metric

CNPs, 43
data sets, 32, 52
GNPs, 44
inputs, 32

moment matching, 41
multiplicity, 57
multiscale architecture, 128, 202

Nadaraya–Watson estimator, 70

204

neural process, 6, 17, 37
autoregressive, 80, 82
comparison, 80, 86
conditional, 18, 39
convolutional, 25
Gaussian, 19, 40, 74, 80
latent variable, 19, 80

neural process approximation, 37
characterisation, 40, 41
conditional, 40, 83, 95
consistency, 47
Gaussian, 40, 83, 108

neural process objective, 30, 31, 36
empirical, 18, 42

Noether’s theorem, 7
NP, 197

overfitting, 42

parameter efficiency, 23
permutation invariance, 22, 53
pointwise MLP, 126
posterior prediction map, 29

formal, 34
regularity, 35, 46

prediction map, 16
continuity, 34
Gaussian, 38
noisy, 36

receptive field, 71, 72
effective, 73

representation theorem, 51
representational capacity, 76, 78, 109

sim-to-real transfer, 115, 201
source channel, 78
stationarity, 68, 75
stochastic process, 16

regularity, 33

supervised learning, 1, 3

target inputs of interest, 32
target set, 15
task, 4
transfer learning, 2
translation, 24
translation equivariance, 7, 24, 55, 68, 76

diagonal, 62, 75, 76
kernel map, 60
mean map, 60

translation invariance
diagonal, 63

translation space, 57
topological, 57

uncertainty
aleatoric, 36
epistemic, 36
separation, 42, 79, 84, 85

universal approximation theorem, 51
universal parameters, 45
universal representation theorem, 55

variance map, 39, 67
variational family, 17, 37

205

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Mathematical Statements
	List of Models
	Notation
	Abbreviations
	Introduction
	From Supervised Learning to Meta-Learning
	Learning to Learn
	Main Contribution
	Historical Context and Positioning
	Outline of Thesis
	List of Publications and Software

	Neural Processes
	Prediction Maps
	Neural Processes
	More on Consistency
	The Anatomy of a Neural Process
	Translation Equivariance
	Summary and Outlook

	Prediction Map Approximation
	Introduction
	Technical Preliminaries
	The Neural Process Objective
	Neural Process Approximations
	Consistency
	Conclusion

	Representation Theorems
	Introduction
	Functions on Data Sets
	Deep Sets
	Convolutional Deep Sets
	Diagonal Translation Equivariance
	Conclusion

	Convolutional Neural Processes
	Introduction
	Conditional Neural Processes
	Convolutional Conditional Neural Processes
	Translation Equivariance and Generalisation
	Gaussian Neural Processes
	Autoregressive Conditional Neural Processes
	Conclusion

	Convolutional Neural Processes in Practice
	Introduction
	Synthetic Experiments
	Sim-to-Real Transfer with the Lotka–Volterra Equations
	Electroencephalography Experiments
	Climate Downscaling
	Conclusion

	A Software Framework for Composing Neural Processes
	Introduction
	Model Design
	Functions as Intermediate Representations
	Coders
	Building Existing and New Models
	Conclusion

	Conclusion
	New Tools in the Neural Process Toolbox
	Advice for the Neural Process Practitioner

	Bibliography
	Proofs for Chapter 3
	Proofs for Section 3.1
	Proofs for Section 3.3
	Proofs for Section 3.4
	Proofs for Section 3.5

	Proofs for Chapter 4
	Proofs for Section 4.2
	Proofs for Section 4.4
	Proofs for Section 4.5

	Proofs for Chapter 5
	Proofs for Section 5.3
	Proofs for Section 5.4
	Proofs for Section 5.5
	Proofs for Section 5.6

	Behind the Scenes of the ConvCNP
	Introduction
	Construction of a Convolutional Deep Set
	Conclusion

	Experimental Details
	Description of Models
	Training, Cross-Validation, and Evaluation Protocols
	Synthetic Experiments
	Sim-to-Real Transfer with the Lotka–Volterra Equations
	Electroencephalography Experiments
	Climate Downscaling

	Index

