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Abstract

'This document describes the design process of a software toolkit to perform high-
performance wideband spectrum sensing. A prominent application of this is Cog-
nitive Radio, a technique that aims to make more efficient use of the available
radio spectrum. An extensive theoretical analysis will be performed. Various non-
uniform sampling techniques will be discussed, such as coprime and circular sparse
sampling. An algorithm to reconstruct the PSD of sub-Nyquist sampled signals
will be developed and a detection algorithm which uses this PSD will be proposed.
'This analysis will be utilised to implement an extensible software toolkit written in
Python. The software architecture and various design patterns that were utilised to
structure the toolkit will be described and its quality and performance will be anal-
ysed. The hardware used for data acquisition, a USRP N210, will be introduced.
'The work will be concluded with a conclusion and its discussion.
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1 Preface

The past eight weeks have been interesting, to say the least. Being in the last year of
the Bachelor phase of our studies, the only thing that separates us from our degree
is the graduation project. For us this was a huge incentive to deliver, which we hope

we did.

We have tried to combine an extensive mathematical analysis, software develop-
ment and hardware design in this project, so that we could apply almost every
aspect of our past education. The result is this thesis. Although it might seem a
rather lengthy piece, we would like to encourage the reader to consider the extent of
the covered subjects, as well as the amount of care with which it was put together.

It does not end there though. During the project we have also ventured out of
our comfort zone and looked into the marketability of potential applications. We
even touched upon the ethical implications of such applications. That subject is
not included in this work, but will be presented separately as part of our business
plan. It has, however, definitely influenced the path we set for ourselves during the
course of the project.

All in all, we think the project was an instructive experience and hope that the
following text reflects that, or even inspires the reader to continue the path we set
out.

— The authors






2 Introduction

Nowadays we cannot imagine a world without wireless technologies. The enormous
increase in wireless applications has lead to a situation in which it has become in-
creasingly difficult to find a piece of the wireless spectrum that is yet unused — or
at least unlicensed — and therefore can be used for new technologies or to increase
the capacity of existing ones. This so-called spectrum-scarcity problem makes it
valuable to be able to gain insight in the current use of the radio spectrum in a fast
and efficient way.

To alleviate the spectrum-scarcity problem the concept of Cognitive Radio (CR)
has been introduced. A Cognitive Radio detects available channels in the spec-
trum that may be used for communication. The concept of a network of Cognitive
Radios is that each Cognitive Radio gains access to the spectrum but does not in-
terfere with other — licensed —users. Therefore it is important that large bands of
the spectrum can be sensed such that it is feasible for each Cognitive Radio to find
a free channel for communication. To reduce the interference with licensed users
to a bare minimum, the Cognitive Radios should be able to not only sense large
bandwidths, but also be able to sense those bandwidths as fast as possible. Sens-
ing large bandwidths, however cannot be achieved with conventional techniques as
those require Analog-to-Digital converters to operate at very high sampling rates.
Analog-to-Digital converters running at such high sampling rate are power-hungry
and cannot provide a feasible resolution in the band to be sensed. Therefore the
need for other, revolutionary techniques arises.

In this thesis we present the implementation of a technology that can be used to
accomplish just that by sampling at sub-Nyquist rates (i.e. requiring less samples
than required by the Shannon-Nyquist sampling theorem). Obtaining samples at a
lower sampling rate implies that cheaper and less energy-hungry hardware may be
used to obtain the same results as with conventional sampling or, conversely, that
using the same hardware, reconstruction of signals with higher bandwidths can be
reconstructed than with conventional techniques. It goes without saying that these
effects can be beneficial in a number of applications.

As required by our assignment, we have divided this work into two major parts,
both of which are written by a separate set of authors and cover a different part
of our total work. Before getting into either part, we will give a more in-depth
description of the problem we are trying to solve, along with a general overview
of our solution, which should help to put our work into the right context. This
introduction should also enable the reader to understand both parts, independent
of each other.



4 Chapter 2. Introduction

In part one, a theoretical introduction to the subject of wide band spectrum sensing
is given, which should provide a mathematical basis in order to understand the inner
workings of the used technologies. Algorithms will be formulated to reconstruct
the power spectral density (PSD) of a signal that was sampled at a sub-Nyquist
rate (reconstruction) and to distinguish any information that may be present in the
reconstructed PSD from noise (detection). This theory is based on some very recent
scientific works [1], [2].

Part two describes the implementation of these techniques using two Universal
Software Radio Peripherals (USRPs), which are a type of software defined radio
(SDR). The focus will be on the design of a software architecture that allows for
high-performance digital signal processing using the USRPs and the design of a
graphical user interface (GUI) that allows for visual verification and control of the
entire system. The performance of the system will also be reviewed.

The thesis will be concluded by an overall conclusion and reflection.



3 Project description

3.1 Problem statement

Cognitive Radio has been introduced to alleviate the problem of spectrum scarcity.
At the heart of the Cognitive Radio lies spectrum sensing. Indeed, it is essential
that Cognitive Radio’s are able to sense a wide band of the spectrum to detect the
presence of primary users. To minimise the interference with licensed users, it is
crucial that this sensing process is as fast and as efficient as possible. Since Cognitive
Radio networks are still in a conceptual stage, the need for a set of tools that can
be used to sense a wide band with high efficiency arises.

'These considerations lead us to our problem statement:

“Can we develop a toolkit that enables real-time high-performance wideband spectrum
sensing?”

3.2 Proposed solution

'The development of such a toolkit requires knowledge of algorithms that can be
used to perform wideband spectrum sensing. Such algorithms do not only include
compressive sensing, but also include detection algorithms that are used to detect
the presence of users. Furthermore, to implement and effectively test those algo-
rithms, it is necessary that they are implemented in a modular software solution.
Furthermore, we require that our toolkit can be tested on a hardware platform.
Based on the complexity of our solution, we decide to divide the design of our
toolkit in two parts.

Part I of the thesis will provide a mathematical framework that solves the design
problem at a theoretical level. The toolkit will be based upon this framework, whose
implementation will be developed separately.

Part IT of the thesis will discuss the design of a modular software architecture that
implements the theoretical framework discussed in Part I. This software architec-
ture will enable to test the solutions proposed by the theoretical framework on a
hardware platform.
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3.3 Source code and documentation

All the code and documentation we have written for this project can be found on
GitHub at https://github.com/pdowm/spectral.


https://github.com/pd0wm/spectral

4 Similar research

Although the concept of a Cognitive Radio network is still at a conceptual stage,
compressive sampling has been researched in for example [3]-[6]. Furthermore,
recent developments have introduced techniques to perform compressive wideband
sensing by noticing that in cognitive radio the signal content is not of interest, only
its presence in the spectrum [2], [7].

'The sampling techniques to sample signals at sub-Nyquist frequencies can be found
in [1], [8], [9] and provide us with information on how to sample signals that can
serve as the input for compressive spectrum sensing algorithrns.

Detection of signals in general is a mature field, and lots of information can be
found in textbooks concerning detection, for example [10], [11]. Detection for
use in Cognitive Radio, is still an active area of research. A recent overview of
techniques for spectrum sensing as a whole for use in Cognitive Radio is given by
[12]. Other detection methods for use in cognitive radio can be found in [13], [14].

Although there is similar theoretical research available, we have only found a few
details about practical implementations, which also motivates the distinction be-
tween the theoretical aspect and implementation in this thesis.
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5 Introduction

Noise is omnipresent. Even in the presence of signals, noise always will be there. Dis-
tincting between noise and signals forms an alluring problem; can good be distinguished
from evil? One often asks where signals prevail in the ocean of noise. But this ocean is
wide, as wide as the spectrum of every observed signal. And we do not have the power to
sail this ocean. ‘Therefore, we must be smart.

In the context of the spectrum of a signal, it is often asked which frequencies are
occupied, and which are not. To solve this problem, one has to sense the spectrum.
Spectrum sensing is determining which frequencies of a spectrum are occupied, and
which are not. An occupied frequency means that it contains a signal distinct from
noise. Therefore, the following problem arises. Given a signal, can we determine
which frequencies of that signal are occupied with signals distinct from noise? In
the introduction, we have seen that this question is asked in many applications.

This question however, is an answered question. By means of sampling and analysing
the spectrum, one provides an answer. But this only works for frequencies relatively
close together. It turns out that for frequencies far apart, spectrum sensing requires
expensive hardware. And so a new question arises. Can we efficiently spectrum
sense in the case of frequencies far apart? Wideband spectrum sensing tries to an-
swer this very question. One then tries to determine which frequencies are occupied
in a wide band.

Answering this question turns out to be hard. Consequently, wideband spectrum
sensing is an active area of research, and there is no definitive answer yet.

In this part, we develop an approach to enable high-performance real-time wide-
band spectrum sensing. The part is divided into several chapters. We start with a
detailed description of our approach, which we consider to be a system. Then, we
give an overview of this system. In the overview, we look at the different system
components, which will be described in separate chapters afterwards. Finally, we
will evaluate the system as a whole.

11






6 System specification

6.1 General description

Our system is an approach which enables real-time high-performance wideband
spectrum sensing. The goal of our system is to determine which frequencies of a
spectrum contain signals distinct from noise. To achieve this goal, we will divide
our system into several modules which all work together. In the following chapters
each module will be designed separately.

Determining whether a signal is distinct from noise forms a decision problem. To
evaluate this problem, one could reconstruct the spectrum of the signal, and deter-
mine whether it resembles one of noise. However, it can be shown that the deci-
sion problem is solved optimally! by evaluating the signal power [12]. Therefore,
we could look per frequency at the signal power to decide whether a signal present
or not. The signal power per frequency is also called the power spectral density.
But it turns out that the power spectral density is derived from the spectrum of a
signal, and requires less information than reconstruction of the spectrum would.
‘Therefore, we focus on an approach which is centered around the reconstruction of
the power spectral density.

The first step in high-performance real-time wideband spectrum sensing is sam-
pling the signal of interest. Conventionally, this is done by sampling uniformly
at the Nyquist frequency?®. This ensures that the signal can be reconstructed after
sampling. However, the Nyquist frequency becomes unreasonably high when one
wants to sense a large bandwidth. As a consequence, expensive hardware must be
used. Clearly, we must look for alternatives. To do this, we investigate sampling
techniques which differ from uniform sampling.

So far, we have not specified what the system actually consists of. Concretely, we
will design a mathematical framework. This framework will be made of many ex-
isting methods and theories, and will form the theoretical basis of the toolkit we
are about to design. Since we design a mathematical framework, our specifications
will be mostly functional, and less quantitative.

UThis is only the case if no prior information is available.
2Remember that the Nyquist frequency is the minimum frequency at which a signal can be sampled
without distorting the signal. The Nyquist frequency is twice the highest frequency present in the signal.

13



14 Chapter 6. System Specification

6.2 System specification

Now that we have identified our goal, we will proceed to describe our system in a
detailed manner. This description consists of specifications according to which our
system will be designed. The specifications are divided into several categories. The
categories are then analysed by MoSCoW prioritisation®. We will be deliberately
vague in quantizing our specifications, since most quantities are dependent on the
application of the toolkit.

As stated in the introduction, the goal of our system is to determine which fre-
quencies are occupied. However, some signals resemble noise very closely.* We
therefore do not require that we recognise such signals. In addition, we do not
require that we can sense an infinitely large bandwidth. In summary, our system
must enable spectrum sensing such that the application

1. is able to identify at which frequencies signals are present, where signals

a) can be any signal distinct from noise and

b) can have any reasonable signal strength;
2. is able to sense any reasonably sized bandwidth and

3. the spectrum sensing is done in real-time.
In addition, our system should enable spectrum sensing such that the application

1. is able to sense very large bandwidths and

2. the spectrum sensing is done as efficient as possible.

Detection

We have described the functionality of our system on a high level. However, dis-
tinguishing signals from noise, which from now on we refer to as the detection of
signals, requires a little more care. Ideally, we want to specify how accurate we
can identify the frequencies which are occupied. Also, since wideband spectrum
sensing is not considered solved, we want to know how accurate our detection is.
In summary, detection of signals must be such that

1. detection of signals consists of determination of the set of frequencies which
are occupied by signals other than noise;

2. the resolution of these frequencies can be specified and

3. the correctness of operation can be specified.

In addition, detection of signals should be such that

3MoSCoW prioritisation consist of dividing the specifications in must-baves, should-haves, could-
haves and would-haves.
“These signals will be further discussed in Chapter 10.
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1. the resolution of detection can be as high as possible;
2. its operation can be as correct as possible and

3. its operation is as eflicient as possible.

Sampling techniques

We discussed that the first step in spectrum sensing is sampling the signal whose
spectrum has to be sensed. It turned out that sampling at the Nyquist frequency
is not efficient enough. We would therefore like to design efficient sampling tech-
niques, which can distribute the workload across multiple devices. In summary the
techniques used for sampling mus¢ allow for

1. correct operation of the detection;
2. usage of a single sampling device and

3. usage of multiple sampling devices such that the workload can be distributed
across the devices.

In addition, the sampling techniques shou/d allow for

1. sampling as efficient as possible.

Reconstruction

After the signal is sampled, the obtained information must be processed such that
detection is possible. We already argued that for unknown signals, this is done
most efficiently by reconstructing the power spectral density. Also, since we want
to do spectrum sensing in real-time, this reconstruction must be done in real-time.
Finally, the reconstruction must be as accurate as possible. In summary, the recon-
struction must be able to

1. operate in conjunction with the sampling techniques and

2. operate in real-time.
In addition, the reconstruction shou/d should be

1. as accurate as possible;
2. as efficient as possible and

3. as fast as possible.
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Toolkit

Sensed

spectrum

Sampling ~ Reconstruction Detection —

Figure 6.1: System overview. The system components are shown.

6.3 System overview

Our system consists of several components, which all work together to achieve the
functionality specified in the previous section. The components are as follows.

Sampling Sampling consists of applying various sampling techniques to the signal
whose spectrum has to be sensed. The actual sampling is not part of the
system, but forms an interface between the signal and our system.

Reconstruction Reconstruction analyses the sampled signal and tries to recon-
struct the power spectral density. Reconstruction has knowledge of the used
sampling technique to perform its operation.

Detection Detection performs the identification of signals based on the result of
the reconstruction. Detection and reconstruction closely work together.

Figure 6.1 shows a system overview. The dashed line depicts the system boundary.

In summary, the signal whose spectrum has to be sensed is sampled first. Then
its power spectral density is reconstructed by means of algorithms designed for
the sampling techniques. Detection then analyses this power spectral density, and
decides per frequency whether a signal is present or not. This decision process is
not based upon which kind of information is encoded in those frequencies, but only
determines if any kind of information is present. After it is determined at which
frequencies signals are present, the spectrum sensing process is complete.

Chapter 7 will give an introduction to non-uniform sampling. Then Chapter 8
will describe a way to reconstruct a power spectral density. Afterwards, different
sampling techniques will be considered in Chapter 9. Chapter 10 will discuss how
this power spectral density is used for detection. Finally, we will evaluate our system
in Chapter 11 and discuss the obtained results in Chapter 12.



7 Non-uniform sampling

7.1 Introduction

This chapter is an introduction to sampling concepts which will be key in under-
standing the design of our system.

7.2 Uniform sampling

As described by the system overview in Chapter 6, the first step in high-performance
spectrum sensing consists of sampling the signal. Conventional methods sample
at an uniform sampling rate, which means that the time between the instants the
samples are taken is constant. Uniform sampling is illustrated in Figure 7.1. Here
blocks represent samples such that subsequent rectangles are subsequent samples.

T

—>

Time —

Figure 7.1: Uniform sampling with sampling period T

7.3 Non-uniform sampling

When one desires to ensure full reconstruction of an uniformly sampled signal, one
needs to sample this signal at least at the Nyquist frequency. However, we are not
necessarily interested in full recovery of the signal, since we only need to detect
which frequencies of the signal are occupied by signals distinct from noise. In our
sampling methods, we aim to not restrict ourselves to uniform sampling, and try to
exploit non-uniform sampling. This allows for methods which sample the signal
in a more efficient way. Since we aim to solely obtain the power spectral density of
the signal, it turns out that by non-uniform sampling, we can still do this. Non-
uniform sampling is illustrated in Figure 7.2. This figure is similar to Figure 7.1,
but some blocks are left white. Only the grey blocks represent sample moments of
the non-uniform sampler.

17
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-~ Y1
T -~ Y2
-~ Ys
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Figure 7.3: Conceptual schematic representation of multi-coset sampling with M
cosets

IH B BN B |

Time —

Figure 7.2: Non-uniform sampling with sampling period T'. Grey blocks represent

sample moments of the non-uniform sampler.

7.4  Multi-coset sampling

Non-uniform sampling, however, is not trivial to implement. To perform non-
uniform sampling, we introduce a concept called multi-coset sampling. Multi-
coset sampling is the name for a set of sampling methods that use multiple samplers
which sample the same signal. These samplers are also called cosets. From now on,
we will use these two terms interchangeably. Multi-coset sampling is illustrated
in Figure 7.3. Here z represents the input signal, the switches represent a sample
operation and y; represent the outputs of the different cosets. In Chapter 8, we will
deduce criteria that will further specify the samplers. Afterwards, in Chapter 9, we
will reconsider non-uniform sampling in more detail.



8 Reconstruction

8.1 Introduction

In the introduction, we argued that we want to avoid sampling at the Nyquist fre-
quency. In the previous chapter, we introduced the concept of multi-coset sam-
pling. Therefore, it would be nice if the cosets in multi-coset sampling could sam-
ple at sub-Nyquist frequencies. The samples obtained by these cosets could then be
used to reconstruct the power spectral density of the sampled signal, which, once
more, we argued to be important during detection.

'This chapter introduces a method to reconstruct the power spectral density of a sig-
nal which is sampled at sub-Nyquist frequencies. Usually, sampling at sub-Nyquist
frequencies causes aliasing, which means that the obtained signal is distorted. Our
reconstruction method should be able to reconstruct the power spectral density of
the signal in real-time, despite the fact that the sampled signal is aliased. We focus
on an accessible, yet complete explanation of such a reconstruction method.

First of all, we will consider various methods which allow for reconstruction of
the power spectral density of signals sampled at sub-Nyquist frequencies. We will
then, based on considerations developed in the next paragraph, choose one of these
methods. Next, we will discuss an algorithm based on this method. Afterwards,
we will discuss some details which turn out to be essential when implementing the
algorithm.

8.2 Overview

There are various methods to reconstruct the power spectral density of a signal.
These methods can be roughly divided in two groups: methods based on signal
reconstruction, such as [3], [4], [6], [8], [15]-[18], and methods which are not
based on signal reconstruction, such as [1], [2].

Methods of the first group are based on the assumption that the signal is either
sparse, or contains few frequencies!. Based on this assumption, they try to recover

1 More specifically, methods of the first group are based on the assumption that the signal is sparse
in a certain basis. Let x denote the signal sampled at the Nyquist-frequency. Also, let the matrix &
consist of rows of the identity matrix such that y = ®x represents the signal sampled at a sub-Nyquist
frequency. If x is sparse in the basis ¥, then there exists a sparse vector s such that x = ¥s. Given
v, the original signal x can be obtained by finding the most sparse vector § such that y = ®®¥8. Then
x = W8§. This problem can be formulated as an /1 -optimisation problem. Since it is assumed that the
signal contains few frequencies, ¥ is often chosen to be the discrete Fourier transform matrix.

19



20 Chapter 8. Reconstruction

the signal sampled at sub-Nyquist frequencies. This can be done by optimisation?
or by various algorithms>. There are a few problems with this approach. First, the
assumption that the signal is either sparse or contains few frequencies may be not
true in our case, since we did not restrict the signal which the application must be
able to process. Second, solving an optimisation problem or making use of such
an algorithm in real-time yields a computationally expensive and complex recon-
struction method. In contrast, methods of the second group are not based on the
assumption the signal is either sparse or contains few frequencies. They do not aim
to reconstruct the signal, but try to solely reconstruct the power spectrum density.
This allows for a computationally less expensive and less complex reconstruction
method, but which is sufficient for detection purposes

Based on the stated reasoning, we decide to discuss a reconstruction method based
on the method discussed in [2].

8.3 Reconstruction of the power spectral density

This section will discuss an algorithm to estimate in real-time the power spectral
density of a signal which is sampled at sub-Nyquist frequencies. We consider multi-
coset sampling such as described in Chapter 7. A step-by-step derivation of the
algorithm in conjunction with more details on multi-coset sampling can be found

in Appendix B.

Mathematical formulation of multi-coset sampling

Let the input signal sampled at the Nyquist frequency be denoted by x[n]. Let the
number of cosets be given by M. Let the output of coset i be denoted by y;[n]. Our
reconstruction method estimates the power spectral density of z[n] by making use
of the outputs of all cosets. The Wiener-Khinchin theorem shows that estimating
the power spectral density of [n] is equivalent to estimating the autocorrelation of
x[n].* Therefore, our reconstruction method aims to estimate the autocorrelation
of z[n]. Let the autocorrelation of the input signal be denoted by r,[m]. Let the
cross-correlation of the output of cosets i and j be denoted by 7, ,,. [m]. We will
make use of 7y, ,, [m] to estimate 1, [m]. This estimation is based on the relationship

ry, = Rr,.

Here r, represents an aggregation of r,, ,.[m] and r, represents an aggregation
of r,. We see that we can use R to relate r,[m] to 7y, , [m]. This means that
R represents the relationship between the autocorrelation of the input signal and
the cross-correlations of the outputs of the cosets. A visual representation of the
relationship of all variables is given in Figure 8.1.

2If the signal is assumed to be sparse, then I1 -optimisation is often used. Such optimisation consists
of minimising the I;-norm of a vector, which is the sum of the absolute value of the elements of the
vector.

3Tf the signal is assumed to contain few frequencies, then the MUSIC algorithm can be used [8].

“More specifically, the Wiener-Khinchin theorem states that the Fourier transform of the auto-
correlation equals the power spectral density, which yields the equivalence.
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- R <
-~ y1[n]
rz[m] <+ | z[n -~ ya[n]
T‘yl sY1 [m}
- ys[n] Pyss.ne M)
S ym|[n]

Figure 8.1: Visual representation of the relationship between the autocorrelation
of the input signal and the cross-correlations of the output signals of the cosets

Sampling signals

Before we describe the algorithm, we have to study the output of a coset more
closely. Note that the following paragraph will be a little more technical.

Every coset i is associated with a sampling signal ¢;[n]. Also, every coset samples
the input signal such that it is an N-decimation of the input signal. However,
there may be an offset in time between the decimations of the different cosets. This
concept is illustrated in Figure 8.2. If we divide the input signal in groups of N
samples, then the output of a coset consists of the same sample of every group of N
samples. The sampling signal of coset i is such that ¢;[n] = 1 if coset ¢ samples the
N — n’th sample of every group of N samples of the input signal. This concept is
discussed carefully in Appendix B. Also, this concept will be discussed in Chapter 9.
From now on, we will refer to N as the downsampling factor.

Algorithm

It is clear that y; [n] is part of the input of the algorithm. The way all cosets sample
the input signal, however, is determined by the sampling technique. The configu-
ration refers to the way all cosets sample the input signal. Possible configurations
are discussed in Chapter 7 and will be further discussed in Chapter 9.

'The input of the algorithm also consists of the parameters M, N, L and K. Here
M and N have already been discussed, where M represents the number of cosets
and N the downsampling factor. The parameter L limits 7, ,,. [m] in support from
m = —L tom = L. This influences the length of the estimated autocorrelation,

STf 1y, ,y; [m] is limited in support from m = —L to m = L, then this means that 7y, . [m] = 0
tor |m| > L.
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Figure 8.2: Illustration of how y;[n] is constructed from xz[n]. The blocks represent
the samples of x[n].

Type Parameter Description

Input M Number of cosets

Input N Downsampling factor. Every coset is an N-decimation
the input signal. However, there may be offsets
between the decimations of different y;[n].

Input y;i[n] Output of coset i

Input L Support of 7, ,,. [m]. This parameter influences the
resolution of the estimated power spectral density of

Input K Accuracy factor. This parameter influences the

accuracy of the estimated power spectral density of
z[n], but increases the measurement time. The
measurement time consists of the time required to
obtain K L samples of the output of every coset.

Output  r,[m] Autocorrelation of x[n]. The autocorrelation r,[m] is
estimated for |m| < LN.

Table 8.1: Input and outputs of the reconstruction algorithm

which then determines the resolution of the estimated power spectral density of
x[n]. The autocorrelation r, [m] will be estimated for || < LN. The parameter K
influences the measurement time, which determines the accuracy of the estimated
power spectral density. The measurement time consists of the time required to
obtain K L samples of the output of every coset.

The inputs and output of the algorithm are summarised in Table 8.1. The algorithm
consists of following steps.

Step 1: Determine ¢;[n] for every coset .
'The configuration determines ¢;[n] for every coset i. How ¢;[n] can be ob-
tained from the configuration is explained in Chapter 9. Sufficient require-
ments on ¢;[n] are discussed in Section 8.4.

Step 2: Construct R.
Section 8.4 explains how to construct R.

Step 3: Measure y;[n] for KL samples for every coset i.
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Step 4: Estimate r, ,, [m] for every combination of cosets i and j.
Section 8.4 discusses how K L samples of ;[n] can be used to estimate r, , [m].

Step 5: Construct r,,.

If
T
Tyiy; = [ryny]‘ [L] Ty [*L]] ,
then
Tyiy
I'y = .
ryM,ZIM

Step 6: Calculate r, = R'r,, which yields an estimation of r, [m].
Here

r, = [ro[LN] - r[-LN]]".

This means that the autocorrelation r,[m] is estimated for |m| < LN, as
stated earlier. The matrix R' denotes the Moore-Penrose pseudoinverse® of
R.

8.4 Implementational details

'This section will discuss some details of the algorithm which should be considered
when implementing the algorithm. We assume that multi-coset sampling is used.

Requirements of the sampling signals

'This subsection discusses sufficient requirements on the sampling signal ¢;[n] which
yield a correct estimation. Remember that the sampling signal determines the way
a coset samples the input signal. The derivation of these restrictions can be found
in Appendix B. The requirements are as follows:

1. Every¢;[n] =0forn <0andn > N — 1.

2. All ¢;[n] = 1 for a single n = n; and otherwise zero.

3. 'The circular sparse ruler problem, which is stated below, must be satisfied.
Circular sparse ruler problem Consider n; for every coset i as discussed in the sec-

ond requirement. The set consisting of |n; — n;| and N — |n; — n;| for all
combinations of cosets ¢ and j must make up 0,..., N — 1.

'The circular sparse ruler problem will be further discussed in Chapter 9.

6The Moore-Penrose pseudoinverse is a generalisation of the inverse of a matrix and can be used to
solve linear systems in the least-squares sense.
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Estimation of the cross-correlations

In Step 4 of the algorithm we have to estimate r,, ,.[m]. Suppose that y;[n] is
known for n = 0,..., KL — 1. We assumed that r,, ,.[m] = 0 for [m| > L. It
then remains to estimate ., ,,. [m] for [m| < L. An estimator of r,, , .[m] is given

by

1

Pysy; M) = m

> i Kly;lk +m] (8.1)
k=1

wherel = —max{0,m} andu = KL—1-min{0, m} [19]. Notice that E(7,, , [m]) =
Ty..y; M|, which means that 7, ,.[m] is an unbiased estimator of 7, ,,, [m].

Sparsity

Operations on large matrices can be computationally expensive. If a matrix is
sparse’, then functions designed for sparse matrices can be used. These functions
can provide significant speedups. In the discussion on the unicity of the estimation
in Appendix B, we argued that every row of R has exactly one nonzero element.
Remember that R describes the relationship between the autocorrelation of the in-
put signal and the observed quantities. Since R has 2L N + 1 columns, the fraction
of nonzero elements of R is given by

1

Pre = 5IN +1°

Since LN determines the resolution of the estimated power spectral density of the
input signal, the product LN is usually chosen large. This means that R is usually
a sparse matrix. This property will be exploited Section 21.2.

Efficient generation of the matrices

In Step 2 of the algorithm, R has to be constructed. It turns out that R can be
generated efficiently using commonly available functions. To generate R, we make
use of the functions toeplitz and tril. The functions toeplitz and tril are
often found in software used for digital signal processing. The operation of these
functions is illustrated in Appendix C. The algorithm to construct R is as follows:

Step 1: Let
Cc= [CLJ'[N — 1] Ci,j[—N—F 1]]
where
cijlml = Y cilkle;k +m.
k=—o0

7The sparsity of a matrix is measured by the number of elements which are zero. Therefore, a sparse
matrix has many zero elements.
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Step 2: Append ¢ with 2(L — 1)N + 1 zeros.
Step 3: Calculate tril[toeplitz(c)].

Step 4: Omit the first N — 1 rows and the last N — 1 columns, and keep rows
1,N,...,2LN + 1. This yields R; ;.

Step 5: Construct

R
R = :

R

An example of the algorithm which illustrates its correctness is given in Appendix C.
'This algorithm can take advantage of highly optimised implementations of toeplitz
and tril. Furthermore, Step 4 can be vectorised or optimised memory-wise.
Therefore, the algorithm allows for fast reconstruction of R.

8.5 Conclusion

We have discussed an algorithm to reconstruct in real-time the power spectral
density, or equivalently the autocorrelation, of a signal sampled at sub-Nyquist
frequencies. We notice that R and thus R can be precomputed, and all matrix
manipulations experience a significant speedup because R is usually sparse. There-
fore, our algorithm allows for fast real-time estimation of the power spectral density
of the sampled signal. This is in contrast to other methods available, since these
methods are mostly based on optimisation or complex algorithms, which yields
computationally expensive methods.






9 Sampling methods

9.1 Introduction

'This chapter will describe different sampling techniques that make up the sampling
component described in Section 6.3. These sampling techniques will be developed
according to their specifications, which were given in Section 6.2.

A lot of theory on different sampling methods has already been published. For
example, [2], [7], [8] describe different methods and describe how to implement
those methods in their respective frameworks. Each of these methods impose their
own restrictions on the design of the sampling device. Circular sparse sampling [2]
describes a technique in which a device uses multiple samplers which all sample
at the same frequency. Collaborative sampling [7] describes a technique in which
multiple devices use multiple samplers. All these samplers sample at the same fre-
quency. Coprime sampling describes a technique in which exactly two devices are
used, but whose sampling frequencies differ!.

In this chapter we further investigate circular sparse sampling, collaborative sampling
and coprime sampling. We will fit them into our system in such a way that they
can collaborate with the reconstruction algorithm, eventually allowing for correct
operation of the detection.

9.2 Concept

In this section we will analyse the different sampling techniques described in the
introduction and connect them to our system. Before we move on, the reader must
understand the difference between a sampler and a device. A device refers to a
physical device, which may employ multiple samplers. A sampler is part of a de-
vice, and performs actual sampling of the signal. Remember that the term coset
and sampler are used interchangeably. Also keep in mind that everything will be
explained conceptually.

Circular sparse sampling

Circular sparse sampling is a form of multi-coset sampling in which samplers all
have the same sampling period NT', where T is the sampling period of the in-

More specifically, their sampling frequencies are coprime.

27
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Figure 9.1: An example of circular sparse ruler sampling with three samplers and
N=7

!/@W

Figure 9.2: Conceptual schematic of a circular sparse ruler implementation. There
may be an offset between the different decimations.

put signal z[n] sampled at the Nyquist frequency and N the downsampling factor.
Here N refers to the downsampling factor discussed in Section 8.3. An example
of circular sparse sampling where N = 7 is illustrated in Figure 9.1.

'The grey blocks represent the samples recovered by all samplers of the device. The
coloured blocks represent the samples that are recovered by the different samplers.
A possible conceptual implementation of this sampling method is illustrated in
Figure 9.2. Here switches represent a sample operation of the input signal z. These
switches sample simultaneously at the Nyquist frequency. The N | represent an
N-decimation. As explained in Section 8.3, there may be an offset between the
decimations of the different cosets. Therefore, the output of every coset is an N-
decimation of the input signal, but there may be an offset in time between the
different outputs. This is depicted in Figure 9.1. Note that this is similar to the
description of multi-coset sampling in Section 8.3.

Figure 9.2 shows that the input signal is sampled at the Nyquist frequency and then
decimated. It is important to notice that this operation is equivalent to sampling at
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a frequency N times lower than the Nyquist frequency. Therefore, the outputs of
the cosets can be obtained by sampling the input signal at sub-Nyquist frequencies,
which is what we aim to do. In practice it is implemented this way. For conceptual
purposes however, we decide to stick to the representation shown in Figure 9.2.

Collaborative sampling

Collaborative sampling is similar to circular sparse sampling, except for the fact that
circular sparse sampling is restricted to only one device, while collaborative sam-
pling allows for multiple devices. Collaborative sampling is illustrated in Figure 9.3.
In this example, we use two devices with three samplers each and a downsampling
factor of N = 13.

In Figure 9.3, the top half represents the first device, and the bottom half represents
the second device. Both devices sample separate signals. Similar to Figure 9.1, the
coloured blocks represent the samples recovered by the sampler of the associated
device. A conceptual schematic of a possible implementation is given in Figure 9.4.

Coprime sampling

Coprime sampling is different from circular sparse sampling and collaborative sam-
P pling P pling
pling in the sense that the samplers sample with different periods. Also, the amount
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Figure 9.4: Conceptual schematic of collaborative sampling implementation.
There may be an offset between the different decimations.

Figure 9.5: Coprime sampling witha =3 and b= 5

of samplers is restricted to two. The first sampler samples with period a7, and the
second sampler samples with period b7'. Coprime sampling requires that « and b
are coprime [8]. The technique is illustrated in Figure 9.5. In this example, a = 3
and b = 5. The choice of the a and b substantially influences the performance of
the coprime sampler. This influence will be investigated later in this chapter.

In Section 8.3, it is assumed that every sampler samples the input signal at the
same sampling rate. However, coprime sampling involves two samplers sampling
at different rates. 'Therefore, using the reconstruction algorithm in conjunction
with coprime sampling is not trivial. Figure 9.6 shows an equivalent hardware
implementation, which may be used for reconstruction. This implementation will
be further discussed later on. Note that the so called equivalent samplers u; and v;
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Figure 9.6: Conceptual schematic of an equivalent implementation of coprime
sampling. Although coprime sampling is technically not regarded as a form of
multi-coset sampling, the equivalence of a multi-coset implementation allows us
to do so. There may be an offset between the different decimations.

yield ab-decimations of the input signal.

9.3 Sampling and reconstruction

In this previous section we discussed three multi-coset sampling methods. In Sec-
tion 8.3, we saw that the sampling method determines the configuration, which is
the way the samplers sample the input signal. The configuration then yields ¢;[n].
Remember that the sampling signal ¢;[n] represents the way sampler ¢ samples the
input signal. If these ¢;[n] satisfy the requirements stated in Section 8.4, then the
algorithm described in Section 8.3 can be used to reconstruct the power spectral
density of the sampled signal. We will reconsider these requirements one by one.

First, every ¢;[n] = 0 forn < 0 and n > N — 1. Since ¢;[n] = 1 if coset i samples
the N — n’th sample of every group of N samples of the input signal, which was
discussed in Section 8.3, this requirement is satisfied.

Second, all ¢;[n] = 1 for a single n = n; and otherwise zero. Every coset ¢ samples
a single sample of every group of N samples of the input signal. Therefore, this
requirement is also satisfied. It is very important to notice this requirement in
conjunction with the first requirement tells us that n; determine the offsets of the
decimations of the different cosets.
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Finally, the circular sparse ruler problem, stated below, must be satisfied.

Circular sparse ruler problem Consider n; for every coset ¢ as described in the sec-
ond requirement. The set consisting of |n; — n;| and N — |n; — n;| for all
combinations of cosets 7 and j must make up 0,..., N — 1.

Letd = |n; — nj| or d = N — |n; — nj| for a combination of cosets ¢ and j.
Equivalently, d is the integer difference between the offsets of the decimations of
cosets i and j. We now say that /ag d is estimated. We will use this terminology
throughout the chapter. The circular sparse ruler problem can be reformulated as
follows.

Circular sparse ruler problem (alternative formulation) Lags0,..., N—1 mustbe
estimated.

We have abstracted the satisfaction of the requirements necessary for reconstruction
to the alternative formulation of the circular sparse ruler problem. The circular
sparse ruler problem is treated in a more abstract way in Appendix D. Also, we
succeeded in formulating the problem as an integer linear program. This allowed
us to calculate optimal solutions. A detailed derivation of the formulation of the
integer linear program can be found in Appendix E. From now on, we assume that
we have solutions to the circular sparse ruler problem readily available.

Circular sparse ruler sampling

Since the solutions to the circular sparse ruler problem are readily available, we can
choose all ¢;[n] such that the problem is satisfied. Then all requirements stated in
Section 8.4 are satisfied and the sampled signal can be reconstructed. It is impor-
tant to note that ¢;[n] is defined for ¢ = 1,..., M, which was explained in Sec-
tion 8.3. Therefore, the solution to the circular sparse ruler problem yields a value
for M. The parameter M determines the amount of samplers which are required.
Since we want to minimise the amount of samplers, we should choose a solution
to the circular sparse ruler problem such that M is minimal. This is discussed in

Appendix D.

Collaborative sampling

In collaborative sampling, the estimation of the lags is split across two physically
separate devices. This situation is analysed and described more carefully in Ap-
pendix D. The advantage of splitting the estimation of the lags across physically
separate devices is that this reduces the workload of a single device.

To ensure that reconstruction is possible, we consider a treatment similar to Sec-
tion 9.3. However, the difference is that Step 6 of the reconstruction algorithm
discussed in Chapter 8 is invalid, because a single device does not satisty the cir-
cular sparse ruler problem. However, since a single device does estimate certain
lags, an analysis similar Appendix B shows that each device solves its own part of
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Figure 9.7: Conceptual schematic of collaborative sampling implementation with
a combiner. There may be an offset between the different decimations.

the equation of Step 6 in such a way that their results yield the complete solu-
tion. Therefore, after the reconstruction of each device, it remains to combine their
results. A possible final implementation is pictured in Figure 9.7.

Coprime sampling

As we argued before, the algorithm design in Chapter 8 is not designed to process
two signals sampled by coprime sampling. This yields that some preprocessing
is necessary. The idea is to break the signal sampled by coprime sampling into
many different signals which seem to be sampled uniformly. More specifically, we
break the signals of the two different samplers with sampling periods a1 and bT
into artificial signals with sampling period abT. This is illustrated in Figures 9.6
and 9.8.

In Figure 9.8, the grey blocks represent the samples recovered by the coprime sam-
pling device. The orange blocks represent the samples that are recovered by the
sampler with sampling period a7, and the green blocks represent the samples that
are recovered by the sampler with sampling period bT'. Finally, the bottom block
shows how the orange and greens blocks are split across many artificial signals.
These artificial signals represent samplers with an uniform sampling period. There-
fore, these artificial samplers make reconstruction possible. Coprime sampling is
discussed more carefully in Appendix D.
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9.4 Conclusion

We have discussed three sampling techniques that can be used with our system.
Each method imposes different constraints and offers different advantages such
that the specifications in Section 6.2 are satisfied. That is, circular sparse sampling
and coprime sampling can be used for sampling with a single device, whereas col-
laborative sampling can be used for sampling with multiple devices. All sampling
techniques, however, allow for correct operation of the detection.



10 Detection

10.1 Introduction

In the previous chapters we have discussed how an estimate of the autocorrelation,
or equivalently the power spectral density, of the input signal can be constructed.
'This estimate will serve as input for the detector.

This chapter introduces several methods to perform the detection process as de-
scribed in Section 6.3. It is worthwhile to note that unlike conventional detectors,
our detector has no access to the original received signal z[n]. Furthermore note
that the estimate of the autocorrelation, 7, [m], is the autocorrelation of a wide-band
signal. It therefore possibly conveys information of multiple frequency bands. As
the detector has to distinguish between noise and signal on a frequency basis (Sec-
tion 6.2), this affects the detection methods that can be used in our system.

We will start this chapter with a global overview of detection methods available.
Based on this overview we will motivate the analysis of two detection methods,
which are described later on. This analysis will lead to a conclusion of this chapter.
For the technical reader a more in depth analysis is included in Appendix F.

10.2 Overview

'The fundamental problem of detection is to discern noise from a signal. This prob-
lem can be formulated as a binary hypothesis test. Given a signal z[n] a detector
has to decide between the hypotheses

where w[n] denotes a noise signal and s[n] a signal different from noise. Under
Ho the signal z[n] contains only noise. Under #; another signal besides noise is
present in z[n]. Besides this hypothesis test, the detector also has to deal with
frequency bands: which frequency bands are occupied by some signal and which
are unoccupied?

35
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We can distinguish between two types of detection methods that provide an answer
to this problem:

1. 'The first type of methods are detection methods based on information of
the type of signals to be detected, such called prior information. A popular
example of this type is cyclostationary detection which uses the knowledge
of the modulation techniques of the signals to perform the detection [12],
[20]. Another example is a matched filter detector. This detector correlates
the received signal with a known signal that is to be detected and therefore
needs exact knowledge of the signal [10], [21].

2. 'The second type of methods are detection methods methods working without
any prior knowledge of the signals to be detected, such called 4/ind detection
methods. A basic detection method of this type is energy detection [12]
which compares the energy contained in a signal to a certain threshold based
on the noise power. Other examples include Covariance Absolute Value de-
tection [14] and wavelet-based detection [13].

A well known problem in the context of cognitive radio is the SNR wa//. 'This
problem states that below a certain signal-to-noise ratio! a detector fails to detect
a signal no matter how long the sensing time [22]. This problem arises from un-
certainties and imperfections in the model assumptions of that detector. Detectors
that use a threshold that is independent from noise or signal parameters are not at-
fected by this SNR wall [12] and possess the property of constant false-alarm rate
(CEAR). This property states the probability that the detector decides that its input
signal is a signal different from noise, where in fact the signal contains only noise,
is constant.

In this chapter we will focus on detection methods that do not assume to have any
prior knowledge available. Although methods that use prior information can op-
erate at lower SNRs than blind detectors, they generally result in more (computa-
tionally) complex algorithms. Furthermore, using a detector that depends on prior
information cannot be used to detect arbitrary signals as demanded in Section 6.2.
2

This chapter will be concerned with the theoretical analysis of the following two
detection methods:

1. Energy detection. This detection method uses a test statistic which is easy
to compute. Its threshold, as stated before, is dependent on the noise power.
This noise power has to be estimated in real detectors for example by using
an empty frequency band as reference. This detection method is therefore
subject to the SNR-wall phenomenon as there will be uncertainty in the noise
estimate.

2. Covariance Absolute Value detection (CAV). This detection method uses a
test statistic based on the autocorrelation of the signal. It uses a threshold that

'The signal-to-noise ratio is the ratio of the signal power and the noise power.

2We will not focus on spread-spectrum modulation in this thesis. Spread spectrum signals occupy
awide band of the spectrum and are designed to be resilient against interception by other detectors than
those of the intended receivers [23], [24].
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does not depend on any signal or noise parameters. Therefore, this detector

does posses the CEAR property [25].

This analysis represents the search for a suitable detector to be used in our system.
The analysis of energy detection is motivated by the relative simplicity of the al-
gorithm and low complexity of its implementation. Analysing CAV is motivated
by the fact that it is a CFAR detector which is convenient in practical applications
[12]. Based on this analysis this chapter will conclude why the final system is using
an energy detector.

10.3 Energy detection

Conventional energy detection

l‘(t) HH(f)—’ADC—' |‘2 ™ Z > Z’Y —>7'[001‘H1

Figure 10.1: Conventional energy detector

A standard digital energy detector[26] is a detector that consists of a low-pass filter
H(f) that filters the analog input signal z(¢) such that only the frequency band of
interest remains®. This filtered signal is then converted to a digital signal z[n] by
an analog-to-digital converter (ADC). Then the detector takes the square of the
absolute value of each sample. The detector then estimates the energy A of the
signal during a period of N samples by summing N of those samples as

N-1
A= faln] (10.1)
n=0

This estimate is then compared to a threshold v to decide whether a signal other
than noise is present in z[n]. That is, A serves as test statistic for the binary hy-
pothesis problem

HQI 1fA<’7,
Hy: if A >

The details behind determining the threshold v and a derivation of this energy
detector can be found in Appendix F.2.

Some energy detectors use A/N as test statistic [27], which is an estimate of the
average power instead of the energy. Using this test statistic, a detector that uses
the autocorrelation r,[m] can be constructed. Such a detector is depicted in Fig-

ure 10.2.

3By using a mixer, a lowpass filter can always be used to for this purpose.
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Figure 10.2: Energy detector using the power spectral density. Here r,[m)] is the
autocorrelation of a filtered signal to the band of interest.

This detector calculates a discrete estimate of power spectral density by applying the
Fast Fourier Transform to 7, [m]. By summation over the obtained power spectral
density an estimate of the average power of z[n] is obtained. Finally, the result is
compared to a threshold 7' to decide between H¢ and H,. Here 4/ = ~v/N.

Energy detection with knowledge of the reconstructor

rz[m]— FFT - PSD[k]

PSD[/{] - i’yk —>/H0 or 7‘[1

Figure 10.3: Energy detection with knowledge of the reconstructor. Here 7, [m] is
the autocorrelation of a wideband signal.

'The problem with the conventional energy detectors as described above is that they
assume that the signal is filtered to only contain the frequency band of interest.
Filtering the input signal, however, affects the reconstruction process of r;[m]:
by prefiltering the input signal before reconstruction, the reconstructed autocor-
relation will correspond to a small band signal (the band of interest) instead of a
wideband signal. We can therefore not prefilter the signal.

A modified energy detector as proposed in [2] is depicted in Figure 10.3. The detec-
tor first estimates the power spectral density by applying the Fast Fourier Transform
to an estimate of the autocorrelation function. This results in a discrete estimate of
the power spectral density. Each element of this estimate is then compared to an
element-dependent threshold 7. As this detector detects per frequency whether
there is a signal present or not, filtering of the signal is not necessary anymore. To
calculate 7}, information about the reconstruction method as described in Chapter 8
is used. Details on this calculation can be found in Appendix F.3.

Noise estimation

As energy detectors rely on knowledge of the noise power it is necessary to have
an estimate of this noise power. This can be done, for example, by taking the mean
power level in an empty frequency band as estimate. If such a band is not known
the noise power can be estimated by using a sliding window over the estimated
power spectral density. The lowest mean observed power in this window is then
taken as an estimate of the noise power.
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10.4 Covariance absolute value method
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Figure 10.4: CAV detector

The Covariance Absolute Value (CAV) detector was first introduced in [14]. A
block diagram of a CAV detector is depicted in Figure 10.4, from which it can be
seen that it performs 5 steps:

Step 1: Calculate the L x L symmetric toeplitz matrix C using the first L samples
of r;[n] as the first column. The matrix C is given by

7:[0] 5 [1] re[L — 1]
o rmz[l] rm:[()] LTy [L:f 2] . (102)
re[L—1] rz[L—2] 7r2[0]

Step 2: Take the absolute value of all elements of C.

Step 3: Calculate the sum of all elements, that is 7} = Zﬁ;ll an;ll Chm.
Step 4: Calculate the trace of C, that is T, = Tr(C).

Step 5: Compare T} /T to a threshold ~. In case that Ty /T5 > it is decided that
H, is true, otherwise H, is regarded as the true hypothesis.

A more technical explanation of CAV can be found in Appendix F.4. From this
technical analysis it becomes clear that the threshold as given in [14] cannot be used
directly with our reconstruction method and will therefore need a re-derivation.*

Filtering

To be able to detect in a certain frequency band the input signal should be filtered
by a band-pass filter. However if the input signal z[n] is filtered, then the noise
in that input signal is also filtered. This affects the autocorrelation function r,[m)|
and therefore affects the test statistic 77 /T% of the CAV detector. A technique to
circumvent this problem is proposed in [14], but requires that the filter applied to
x[n] is known. However, we start our detection process with r,[m] instead of x[n]

#The elements of the autocorrelation as estimated by our reconstructor exhibit a variance that is
different from the elements of the estimate as assumed in the derivation in [14].
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and moreover we cannot filter the input signal of the reconstructor. Therefore this
technique cannot be applied. This limits the CAV implementation as described in
this section to detection in just one frequency band. Furthermore, if use of this
technique was possible, it would imply that we need to apply it per frequency band
which may significantly add up to the computational cost in case that wide-band
spectra are used.

10.5 Conclusion

In this chapter we have presented two different detection methods. We have ob-
served that using our reconstruction method as described in Chapter 8 affects the
applicability of the default implementations of these detectors. Furthermore we
have noticed that the energy detection method for use with our reconstruction
method is affected by the SNR wall. Although the CAV detection method does
not suffer from this SNR wall due to its CEAR property, it does introduce a new
problem when it is required to detect in multiple frequency bands. Moreover the
default threshold as derived in [14] needs to be re-derived if CAV detection is to be
used with our reconstruction method. Based on this analysis, we therefore conclude
that the modified energy detector is most suitable for use in combination with our
reconstruction method: energy detection has a relatively low-computational cost
and can be used to detect in multiple frequency bands. Using CAV detection needs
additional analysis to support multiple frequency bands.



11 System evaluation

11.1 Introduction

Chapters 7 to 10 have analysed and described several sampling, reconstruction and
detection techniques. Itis in this chapter that we will evaluate their performance. A
discussion will be based on the specifications as described Section 6.2. The chapter
will start with an overview of the complete system, to continue with a description
of the tests performed to assess the performance of the system. We will end with
the results of those tests. These results will be further discussed in Chapter 12.

11.2 Overview

A block diagram of the complete system is depicted in Figure 11.1. Considered
options that did not make it into the final system are grayed out.
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Figure 11.1: System overview with design choices

11.3 Testing

To evaluate the performance of our system we will we use an artificial testing signal
to test both the reconstructor and the detector. Details on the generation of this
signal can be found the subsequent section.
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Figure 11.2: Testing the system

Test signal

The test signal will consist of an ideal signal polluted with noise. The signal power
and noise power will be based on a specified signal-to-noise ratio. Given a signal-
to-noise ratio, we can construct the testing signal by doing as follows:

1. Generate the ideal signal s[n]. The signal will consist of filtered circular sym-
metric complex Gaussian noise such that it represents a bandpass signal with
—0.2 < f < 0.2, where f denotes the usual relative frequency.

2. Generate the noise signal w[n], which will be additive circular symmetric
complex Gaussian noise. The average power of the signal and the noise are
chosen such that the required SNR is met.

3. Add s[n] to w[n] to produce the testing signal z[n].

Tests

There are three parameters of the system, represented by circles in Figure 11.2, that
will be used in our tests to assess the performance of the system. The parameters
are as follows:

1. The SNR of the input signal.
2. 'The sampler type used to sample the input signal.
3. 'The false alarm probability py, of the detector.

Our tests will be targeted at

1. addressing the performance of the reconstruction by feeding it an artificial
constructed signal while

a) varying the sampling technique used to sample the signal, described in

Chapter 9 and
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b) varying the compression rate and the sampling time, described in Chap-
ter 8.

By comparing the reconstructed power spectral density to the power spectral
density recovered directly from the constructed test signal, we can evaluate
the correctness of reconstruction when used with a specific sampling tech-
nique.

2. addressing the performance of detection on the reconstructed signal. The
modified energy detector as described in Section 10.3 will be evaluated by
tests that make use of the test signal as described in Section 11.3. Detection
is applied to the output of the reconstructor while

a) varying the signal-to-noise ratio of the test signal and

b) varying the false-alarm probability.

'The sampling technique is fixed to circular sparse sampling. The reason for
this is that the dependence of the detector’s performance on the reconstruc-
tor’s performance, is such that techniques with equivalent reconstruction per-
formance yield approximately equivalent detection performance. Therefore,
we can use the results of the reconstructor to extrapolate the results of the
detector.

By extensive simulation we can construct estimates of the receiver operating
characteristic curves, which plot the detection probability versus the false alarm
probability of the detector. From these curves the minimum signal strength
and the detectors performance on a random signal can be evaluated. Further-
more the detection performance of the system as a whole can be evaluated by
comparing these curves.

11.4 Results

'The performance of the reconstructor is depicted in Figures 11.3a to 11.3¢, which
are accompanied by Tables 11.1 to 11.3. The performance of the detector is de-
picted in Figures 11.4a, 11.4b, 11.5a and 11.5b. Their results will be evaluated
separately. Before we continue, the reader must be aware of the following two
concepts.

First, we argued in the introduction the we want to avoid sampling at the Nyquist
frequency. It turned out that multi-coset sampling offered a solution to this prob-
lem. To evaluate the different sampling techniques, we introduce a quantity called
compression. Compression is the percentage of the number of samples the sam-
pling technique requires with respect to the samples obtained when sampling at
the Nyquist frequency. Therefore, high compression represents an effective sam-
pling technique.

Second, we introduce the normalised mean squared error (NMSE) to assess the
performance of the reconstructed power spectral density.! A lower NMSE repre-
sents a better reconstruction of the power spectral density.

1f PSD represents the estimated power spectral density, then the NMSE is given by ||[PSD —
PSD||/||PSD]|.
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Sampling technique Compression  Configuration Downsampling
Circular sparse ruler sampling  69% 4 samplers 13x%

Coprime sampling 55% 2 samplers, periods 47" and 5T 4x
Collaborative 54% 6 samplers over 2 devices 13x%

Table 11.1: Description of the sampling techniques depicted in Figure 11.3¢

Reconstruction

The performance of the reconstruction will by measured by varying the sampling
time, where we illustratively assume a Nyquist frequency of 25 Mhz, and by vary-
ing the sampling technique. These sampling techniques can all achieve different
compressions.

Figure 11.3a shows the NSME for coprime sampling. We see that the error in-
creases as the compression increases, but decreases as the sampling time increases.
A similar observation applies to Figure 11.3b. Also, we see that for a similar com-
pression, circular sparse ruler provides less error than coprime sampling. The precise
configuration is described in Tables 11.2 and 11.3. These tables show us that cir-
cular sparse ruler allows for more downsampling, but also requires more samplers.
Note that the resolutions of the reconstructed spectra differ. This should be taken
into account when comparing the two methods. Figure 11.3¢ shows three sam-
pling techniques which have equivalent performance. We observe that their per-
formance gain by increasing the sampling time is equivalent. Table 11.1 shows that
in the case of equivalent performance, coprime sampling requires the least number
of samplers. Also, in that case, coprime sampling has the least downsampling and
circular sparse ruler sampling has the highest compression.

Detection

Figures 11.5a and 11.5b show the performance of the detector in the case that
circular sparse ruler sampling with 69% compression is used. The performance is
shown for signals with —5dB, 0dB and 5dB SNR. In addition to detection using
the theoretical noise level, we have simulated uncertainty in noise power by adding
0.5dB to the theoretical noise level.

The 802.22 IEEE standard tells us that a detection probability of 0.9 can be con-
sidered sufficient. We see that in case that the noise power is known, signals with
approximately 0 dB SNR or higher can be detected sufficiently. However, in the
case that the noise power is not accurately known, a detection probability of ap-
proximately 0.9 requires a relatively high false-alarm probability. Finally, if we in-
crease the compression of the used sampling technique, the detection performance
deteriorates.
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(a) Coprime sampling. The curves are described in Table 11.3. (b) Circular sparse sampling. The curves are described in Ta-
ble 11.2.
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(c) Equivalent performance of different techniques. The curves are described in Table 11.1.

Figure 11.3: Normalised mean squared errors of the reconstructed power spectral
densities by different sampling methods. The plots assume a Nyquist frequency of
25 MHz. The Nyquist sampled signal is limited in support such that 7, [m] = 0 for
|m| > 60. Note that the different techniques yield different resolutions.
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Sampling technique Compression Configuration Downsampling
Circular sparse ruler sampling  57% 3 samplers X

Circular sparse ruler sampling  69% 4 samplers 13x

Circular sparse ruler sampling  76% 5 samplers 21x

Table 11.2: Description of the sampling techniques depicted in Figure 11.3b

Sampling technique Compression Configuration Downsampling
Coprime sampling  47% 2 samplers, periods 3T and 5T 3x
Coprime sampling ~ 55% 2 samplers, periods 4T and 5T 4x
Coprime sampling 61% 2 samplers, periods 4T and 7" 4x

Table 11.3: Description of the sampling techniques depicted in Figure 11.3a
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(a) The case of no noise power uncertainty (b) The case of 0.1 dB noise power uncertainty

Figure 11.4: 'The detector’s receiver operation characteristic. Circular sparse sam-
pling with 76% compression is used.
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12 Discussion

12.1 Introduction

'This chapter will reflect on the results which were presented in Chapter 11. We
will carefully reconsider the specifications stated in Chapter 6.

12.2  Sampling

Recall that the techniques used for sampling must allow for

1. correct operation of the detection;
2. usage of a single sampling device and

3. usage of multiple sampling devices such that the workload can be distributed
across the devices.

In addition, the sampling techniques shou/d allow for
1. sampling as efficient as possible.

We have designed three sampling techniques to fit our system. We saw that to-
gether, these techniques met their requirements. First, all techniques where re-
fined to enable correct operation of the reconstructor. Second, coprime sampling
and circular sparse sampling allow for the usage of one device, and collaborative
sampling allows for the multiple devices. Finally, we have abstracted the correct
operation of the reconstruction to the satisfaction of the circular sparse ruler prob-
lem. Since the solution of this problem influences the efficiency of the sampling
technique, we can optimise to find solutions such that sampling techniques are as
efficient as possible. This optimisation is discussed in Appendix E.

A comparison between the different sampling techniques has shown that each sam-
pling technique has its own advantages. For example, circular sparse ruler sampling
allows for the biggest compression, coprime sampling for the least amount of sam-
plers and collaborative sampling for the usage of multiple devices while distribut-
ing the workload. We can therefore conclude that the sampling technique must be
chosen according to the situation, and there is no ‘one size which fits them all’.

49
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In addition to meeting the requirements, we did some research on the circular
sparse ruler problem to further optimise finding solutions. This was discussed in
Appendix D. The circular sparse ruler problem allowed us to construct solutions
for multi-coset sampling with comparably higher compression than the solutions

proposed in [2].

We can also assess the similarities of the different sampling techniques. For ex-
ample, circular sparse sampling can be considered a form of collaborative sampling
with one device. This observation arises the question if is possible to generalise all
sampling techniques to an universal technique. This universal technique could then
be optimised. This is considered future work.

12.3 Reconstruction

Recall that the reconstruction must be able to

1. operate in conjunction with the sampling techniques and

2. operate in real-time.
In addition, the reconstruction shou/d should be

1. as accurate as possible;
2. as eflicient as possible and

3. as fast as possible.

We have designed a reconstruction algorithm which is able to reconstruct the power
spectral density of the sampled signal. We will reconsider the specifications one by
one. First, the sampling techniques were carefully designed such that they adhere
to this design. Therefore, the reconstruction algorithm is able to operate in con-
junction with the sampling techniques. Second, the algorithm requires a specified
amount of samples of the outputs of all cosets to operate. Since this amount can be
specified, which is a trade-off between sampling time and accuracy, the reconstruc-
tion arguably operates in real-time. Third, Chapter 11 shows that for reasonable
measurement time, the algorithm provides a reconstruction with NMSE less than
10712, Although this may be accurate, the reconstruction does not provide a recon-
struction as accurate as possible, since the complex interaction between the system
modules implies that further optimisations of the algorithm may be possible. Fi-
nally, we have argued that the algorithm is computationally less intensive and less
complex than other existing method based on optimisation or complex algorithms.
We have optimised the operation of the reconstruction by exploiting sparsity and
by providing a fast algorithm for generation of the matrices. By this means we tried
to make the reconstruction as efficient and as fast as possible. However, this is also
subject to discussion.

In addition to meeting the requirements, we have done extensive research on refor-
mulating the algorithm in terms of using a biased estimate for the cross-correlations
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of the output of the cosets. In comparison to the proposed unbiased estimator, a bi-
ased estimator can have smaller variance, which can result in smaller mean squared
error of the estimation [19]. Although this analysis has been thorough, its con-
clusion was not definite. We therefore conclude to not include the results in this
thesis. We consider research on using a biased estimator to be future work.

12.4 Detection

Recall that the detection of signals must be such that

1. detection of signals consists of determination of the set of frequencies which
are occupied by signals other than noise;

2. the resolution of these frequencies can be specified and

3. the correctness of operation can be specified.
In addition, detection of signals should be such that

1. the resolution of detection can be as high as possible;
2. its operation can be as correct as possible and

3. its operation is as efficient as possible.

For the detection on the output of the reconstruction we have looked at two blind
detection methods: modified energy detection and CAV. Based on a theoretical
analysis we have decided to adopt the modified energy detector in our final system.
This energy detector has been modified to work with our reformulated algorithm.
This detector fulfills the must-haves: it is designed to detect per element of the
reconstructed power spectral density whether noise or another signal is present.
'This also implies that it fulfills the should-have of the maximum possible resolution.
From this set of comparisons, the set of frequencies occupied by some signal can
be derived. Furthermore, it is possible to adjust the false-alarm probability of this
detector and thus the correctness of operation can be specified.

From the results as presented in Section 11.4, we conclude that the detector does
not fulfill the should-have that its detection should be as correct possible. The
results indicate that relative small noise uncertainty considerably degrades the per-
formance. Namely, the false alarm and the detection probability are affected by
this problem. Furthermore, we have seen that this detector is not able to provide
a reasonable! detection probability at low SNR’s. Whether its operation is as effi-
cient as possible is subject to discussion. From a computational point of view, the
detector is efficient due to the fact that computation of its test statistic is relatively
simple. From an operational point of view, however, there is room for improve-
ment and other detectors may provide better performance in the sense of detection
probability and false alarm probability. This point of view has also motivated the
analysis of the CAV detector in Chapter 10. Due to time constraints the current

A detection probability of 0.9 is given in the 802.22 EEE standard.
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CAV implementation is limited in its detection abilities. That is, it cannot dis-
tinguish between frequency bands. Therefore CAV has not been included in our
final system. Initial tests, however, indicate that the CAV detector outperforms the
modified energy detector on the testing signal as described in Section 11.3. These
tests motivate further research in the detection algorithm to be used in detection
module.



PartI1

Implementation

R.P. Hes
T.C. Leliveld
W.M. Melching

53






13 Introduction

Part I provides an in-depth description of the theory required in the design of a
high-performance spectrum sensing system. In this part, we will describe how this
theory was implemented into a system that integrates sampling, reconstruction and
detection and presents the results in a GUI in the form of a web-application to any
user that connects.

In the following section we will state the system requirements that were set and
have led to the software package in its final form. Then, starting a new chapter, the
software platforms and libraries that were used will be briefly introduced, so that
the reader might better understand their role in the system. We will also touch
on the workflow that was followed during development. After this, we will move
on the system itself and provide an overview of its architecture, so we can develop
an understanding of its functioning in a structured manner. In the three chap-
ters following this overview, we describe each of the system’s three main individual
components in greater detail. Next, the hardware that was used to obtain actual
spectrum data for real-time analysis will be discussed. Consequently, we will per-
form an analysis of the quality and performance of the final software package, in
which testing, formal guidelines and benchmarking will be deployed to determine
how ‘good’ our software is. The part will be concluded with an overview of any
future work that might be interesting.

All the code and documentation we have written for this project can be found on
GitHub at https://github.com/pdowm/spectral.

13.1 Specifications

'This section gives a detailed description of the taken approach. This description
consists of specifications according to which the approach will be designed. The
specifications are divided into several categories. The categories are then analysed

by MoSCoW prioritisation.

General

'There are a number of general requirements that were considered at the start of the
project:
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* 'The implementation needs to be fast and efficient. Existing products are all
targeting high performance. The advantage of compressive sensing is that
less (expensive) hardware can be used at the cost of more demanding com-
putations.

* 'The implementation needs to be modular in the sense that different kinds of
approaches to the problem (both in hardware and algorithms) can be imple-
mented and require a minimal adjustment in the software.

* 'The implementation needs to flexible enough that it could be run on differ-
ent computational platforms (distributed networks, embedded devices, etc.)
with minimal adjustment in the software.

To summarise, we target: performance, modularity and flexibility. More specific
requirements, following the MoSCoW-method, like in Part I, are given in the
following section.

Software

'The software must be developed such that

1. it implements the generation and/or sampling of a simulated spectrum;

2. itimplements the emulation of non-uniform sampling techniques on Nyquist-
sampled spectra;

3. it implements the reconstruction of the sampled spectrum, using techniques

from Chapter 8;

4. it implements the detection of any signal present in the reconstructed spec-
trum, using techniques from Chapter 10 and

5. it is able to clearly present the results of generation, reconstruction and de-
tection to the user.

'The software should be developed such that

1. the highest possible performance may be achieved;
2. it is designed in a structured and maintainable way and

3. it is be usable on multiple platforms.

Hardware

The software must allow for

1. the use of a Ettus Research USRP UHD N210 transceiver to obtain data;

2. the use of such a device to implement compressive sensing and
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3. the use of two (or more) of these devices to implement collaborative sensing.
"The software should allow for
1. fully utilising the USRP’s capabilities.

For the coulds and woulds see Chapter 22.






14 Preliminaries

14.1 Libraries

In this section we will discuss a number of used libraries and the advantages these
have over other libraries/frameworks.

Python

Initially, two platforms were considered for development: MaTLAB and Python.
Taking our project preliminaries in account, Python provides the best option. Rea-
sons for picking Python are:

* The Python libraries NumPy and SciPy use the same linear algebra libraries!
that MATLAB uses for the actual calculations, so the speed difference will be
marginal.

* Python is a non-proprietary platform, meaning it can be used commercially
in the final product without additional charge.

* Python provides many libraries that allow for distributed networking/com-
puting [28].

* Python is a full-blown programming language, meaning it has libraries for
non-numerical applications such as web-frameworks, that allow for more ad-
vanced visualisation options.

'The Python version used is 2.7. We are forced to use Python 2 (instead of the newer
Python 3) because GNU Radio does not support Python 3. The original reference
and used reference are respectively [29][30].

GNU Radio

GNU Radio is a comprehensive library of signal processing tools. It offers a frame-
work and a vast collection of digital signal processing functions. The initial version
of our system was written in this framework. By building custom signal processing

!Depending on OS this can be one of the many implementations. A few popular are openBLAS,
ATLAS, Accelerate on Apple machines or Intel’s proprietary MKL.
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blocks we could extend the functionality of GNU Radio with our own compressive
sensing functions.

However, soon this became too slow and complex for our needs. In the final version
of our system we only used the USRP block from the GNU Radio library in one of
our sources to receive samples from the USRP.

Numpy

NumPy is Python’s standard numerical calculations library, providing a faster (multi-
dimensional) array and high level bindings for a variety of linear algebra routines,
amongst other. NumPy is licensed under the new-BSD? license. The reference
manual is available at [31].

Scipy

SciPy is Python’s replacement for a lot of default functions that are included in
MartLraB. Relying on NumPy data structures, it gives a variety of subpackages (such
as signal, their DSP-library) providing another means of quickly implementing
advanced calculations. SciPy is licensed under the new-BSD? license. The reference
manual is available at [31].

Flask

Flask is a2 micro web framework. The choice for a web interface will further be dis-
cussed in Chapter 18. The advantage of Flask over other web frameworks (such as
Django) is that it is a more bare-bones minimalistic (i.e. simple) approach that suits
our needs. Flask is licensed under the new-BSD? license. The reference manual is
available at [33].

Twisted

Twisted is Python’s event-driven network programming framework. It was used
in conjunction with Autobahn. Twisted is licensed under the MIT? license. The
reference is available at [34].

Autobahn

Autobahn is a real-time framework for websockets. It was used as a means of
sending data to the GUI. It is written on top of Twisted and asyncio and is licensed
under the MIT? license. The reference is available at [35].

2The BSD 3-Clause license is free for commercial and non-commercial use for more info and the
template see [32].



14.2. Workflow 61

Pyro

Pyro is a popular remote-object library. It allows us to do application programming
over the network. In the future it could be an easy means of doing distributed net-
working but as of now it functions as a simple means of inter-process communica-
tion. Pyro is licensed under the MIT? license. The reference manual is available at

[37].

Bootstrap

Bootstrap is a front-end CSS* and JavaScript framework. The framework was de-
veloped by Twitter. It implements a number of primitives, much like a GUI frame-
work does on X11 (the display server used in many Linux distributions), allowing
us to quickly implement a portable GUI. It suits our demands to be able to ren-
der both on mobile and desktop views, without much effort. Bootstrap is licensed
under the MIT? license. The reference manual is available at [38].

Highcharts

Highcharts is a JavaScript plotting library capable of fulfilling all front-end plotting
needs. This library was picked because of its customisability and ease-of-use. One
major side note is that it is only free for non-commercial use. The Highcharts
reference is available at [39].

14.2 Workflow

Version Control

For version control git was used. Gitis a distributed version control system enabling
non-linear development in the form of branching. This allows us to maintain a
stable master branch, which is used to maintain a stable version of our product,
a development branch in which features can be combined and minor bugs can be
fixed and several feature branches for larger feature implementations. This specific
workflow with git is called Git Flow [40]. We used a GitHub private repository to
host our project on.

Testing

To verify the correctness of our code we used two kinds of testing: unit tests and
integration tests.

3Software under the MIT license is free for both commercial and non-commercial use. For more
info see [36].
4Cascading Style Sheets, a language for styling web pages.
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Unit tests

Unit tests are small tests that test on a function level. They test if each function
returns the right values for given input signals and tests for edge cases. These unit
tests should be fast and be run often while writing code. This way, the correctness of
one’s code may be verified at all times. When the tests pass, the code is guaranteed
to work according to the specifications. This becomes particulary important when
working on a large project with multiple people. Any change in code can be verified
quickly. Writing unit tests also forces the developer to think more about their code
and stimulates modular design.

It is also possible to write the tests before the implementation of a function. This
is called test driven development (TDD). In our design we decided not to use this,
because the specifications were not entirely clear at the start of the project. In case
of an abundance of additional time, TDD would definitely be a preferred approach.

Integration tests
Integration tests are tests that encompass a large part of the system. In our case we

wrote tests where a couple of functions were tested at the same time. The output
data was then compared by the output of a MATLAB script that we knew was correct.

Nose
In addition to the standard Python testing library Unittest, the library nose was

used. This library provides some additional test commands and asserts which allow
us to set up a more extensive test framework.

Profiling

For profiling the standard cProfile library was used. This is included in the standard
Python distribution and is the de facto standard for profiling in Python.



15 System Overview

In this chapter we will give an overview of the chosen system architecture. In the
following chapters we will describe each part of the system in more detail. From
the start we implemented a library (also called a package in the Python community)
in which we build up our primitives. This was our first step in tackling the problem
in a structured manner.

15.1 Model-View-Presenter

For the design of our library we chose a Model-View-Presenter architectural pat-
tern (with passive view, referred to as MVP from now on). It is a variation on
the well known Model-View-Controller pattern [41]. It consists of the following
components:

Model This encompasses the sub-package spectral.core, that handles all the do-
main logic!.

Presenter This encompasses the sub-package spectral.supervisor, that handles all
the application logic?.

View This encompasses the sub-package spectral.web, that contains the GUI el-
ements.

An overview can be seen in Figure 15.1. The most important advantage of MVP
is that the domain logic and application logic are completely separate. The model
concerns itself with the domain logic, the view with the representation of the data
and the presenter manages the data and user input synchronisation. This allows us
to do orthogonal design.

Model

'The goal was to implement enough primitives in these libraries that a large number
of configurations can quickly be constructed together. This is to account for the

'The domain logic comprises the modelling of our problem.
2The application logic is the logic that drives the application. This is amongst other things handling
the input data from the user and reflecting it in the model.
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Figure 15.1: Illustration of the MVP pattern as an hierarchical way of separating
our system.

variety of configurations in which this product can be used. It also allows us to test
different kind of sampling techniques with reconstruction methods.

A side effect of writing code this way is that it makes our code modular. This
means most “blocks” can be tested individually. To accommodate this, the Strategy
design pattern is used for all the models. The Strategy pattern implements a family
of algorithms behind an interface. It was first introduced in [42]. This is further
discussed in Chapter 16.

View

'The view should supply the user with a clear overview of what is happening in the
model and allow them to change execution parameters during runtime. It fulfills
the role of a graphical user interface or GUI. An additional requirement is that the
view should be accessible to multiple users at the same time. How this is achieved

will be described in Chapter 18.

Presenter

Finally, the presenter assumes the role of middle-man, in the sense that it forms
the ‘glue’ between model and view. It coordinates both their actions and allows
them to interact in a controlled manner. A major feature of the presenter is that
it coordinates the entire system in a concurrent manner, in stead of sequentially,
which should greatly increase performance, since most tasks can be handled simul-
taneously. The presenter will be described in-depth in Chapter 17.



16 Model - The Core

In this chapter we will discuss the model part of our system. This consists of the
various implementations of source, sampling, reconstruction and detection compo-
nents. All functionality discussed in this chapter is contained in the spectral.core
sub-package. Figure 16.1 shows the model and its interfaces. Every interface sets
up a contract for one or more methods, which mean any class that implements this
interface must also implement the method.

16.1 Source

All sources implement the interface Source, which has a contract for a generate
method. This generate function should return the requested number of samples
from a specific source. The sources can be divided in three categories, the simulated
sources used for testing our algorithms, the file sources which generate data from
saved files and real-world sources that connect to the USRPs to retrieve samples.

Simulated Source
The simulated sources are used for testing our algorithms. All the simulated sources

have the same base class, SimulatedSource. This base class adds some utility
methods to the sources to add Gaussian noise to the generated data.

Sinusoidal
The sinusoidal source generates a real valued signal, with a sum of real valued si-

nusoidal signals with different frequencies. Because the signal is real valued this
generates a symmetrical spectrum. Optionally an SNR can be specified.

] )
E Model E
) 1
' '
] )
' Source Sampler Reconstructor Detector !
E generate() ’ sample() ’ reconstruct() ’ detect() E
] )

Figure 16.1: 'The model and its interfaces
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Source

samp_freq : float

generate()
parse_options()

N

UsrpN210
: center_freq: int
SimulatedSource File gain:int
. data file lo_offset : float
fSrNF‘:J érl]\lc?gseType data type samp_freq : float
& item_size uhd : usrp_source
cmplx_white gaussian_noise() length window : list
real_white_gaussian_noise() offset : int generaiey)
white_gaussian_noise() generate() parse_options()
set_frequency()
set_gain()

ComplexExponential Rect Sinusoidal
widths
generate() generate) generate()

Figure 16.2: The UML diagram of the sources

Complex exponential

The complex exponential source is the complex equivalent of the sinusoidal source.
The generated complex signal is the sum of complex exponentials with different
frequencies. Optionally an SNR can be specified.

Rectangular source

The rectangular source generates a signal with multiple rectangles in the spectrum
with specified frequencies and widths. The time domain signal is generated by
adding multiple sinc functions with a carrier frequency. Optionally an SNR can be

specified.

File source

'The file source reads the samples from a file. This was used to test with real world
data, but still get reproducible results. The files are compatible with GNU Radio’s
file sink. The file source loops over the entire data.
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Sampler
C : NoneType

get_C()
sample()

|

MultiCoset

zZ0

build_sampling_matrix()
sample()

Coprime Minimal SparseRuler

coprime_multiples() sparseruler()

Figure 16.3: 'The UML diagram of the samplers

USRP N210 source

The USRP source uses the finite_acquisition function from the GnuRadio
package. This provides a very easy way to get a specified number of samples from
one USRP. This method has a few drawbacks (see Section 19.1). The problems
with the DC compensation of the local oscillator are prevented by shifting the
local oscillator out of the sampled spectrum. Unfortunately this halves our effective
bandwidth. A function is also implemented which allows us to change the center
frequency and the gain.

16.2 Sampling

After the uniform samples are generated, different sampling methods have to be
applied. Each sampler implements an interface called Sampler , which has a con-

tract for sample-method. The interface also defines a getter for the C-matrix!.

Multi-coset sampler

Multi-coset sampling (as introduced in Chapters 7 and 9) is based on a multiple
device sampler. The crucial component here is the offset of the common sampling
period (sometimes referred to as the ‘ruler’ of a multi-coset system in context of
the minimal sparse ruler problem). The list of offsets is one of the constructor
arguments used to generate the C-matrix which has dimensions defined by M and
N, which are the other arguments of this implementation.

This is required for the reconstructors as their algorithms require knowledge about the sample
intervals.
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The implementation of the sample method takes a signal, uniformly sampled, as
its argument and returns a multi-coset sampled signal. Our initial implementation
used a loop and a matrix multiplication. To speed up this function the for loop was
vectorised by a single matrix multiplication. This is achieved by reshaping the input
signal to a matrix with one dimension N and the other determined by the length
of the input signal.

Minimal sparse ruler sampler

'The minimal sparse ruler inherits from the multi-coset sampler. It feeds a solution
to the minimal sparse ruler to the multi-coset sampler, which it obtains from a
lookup table. It inherits all the other functionality from the multi-coset sampler.

Coprime sampler

The coprime sampler also inherits from the multi-coset sampler. It generates a
number of coprime multiples (see Chapter 9) as a set of intervals and feeds that
into the multi-coset sampler. It inherits all the other functions from the multi-
coset sampler.

16.3 Reconstruction

Two different kind of reconstruction methods are implemented. One is similar to
the one specified in [2] and the other is discussed in Part I of this thesis. Both
reconstructors implement the interface Reconstructor , which has a contract for
a reconstruct method, which is depicted by the UML-diagram in Figure 16.4.

Reconstructor

cache_pseudoinverse()
calc_pseudoinverse()
check_valid_pinv()
cross_correlation_signals()
get_Rpinv()
get_filename()
get_non_zero_column()
load_pseudoinverse()
reconstruct()

[ e

CrossCorrelation

C
C L
L M
M N
N R
R R_pinv : csr_matrix
R_pinv : csr_matrix build_D()
block_toeplitz() build_rcc()
cross_correlation_filters() constructR()
reconstruct() filter_cross_correlation()
reconstruct()

Figure 16.4: The UML diagram of the reconstructors



16.3. Reconstruction 69

Both classes make use of shared functionality to calculate a pseudo-inverse. This is
a wrapper around SciPy’s pinv. Because this operation is quite time-consuming
for larger matrices, a caching mechanism was introduced to lower start-up times.

CrossCorrelation

This class implements an algorithm based on the one described in [2]. The algo-
rithm has two parameters. The first one determines the maximum lag that will be
estimated of cross-correlation of the cosets, often referred to as L. The second one
is the sampling matrix used by the sampler described in Section 16.2. 'These are
also the parameters specified? in the paper.

Optionally a switch can be passed to disable the caching mechanism described in
the base class. During the initialisation of the class it builds the R-matrix as dis-
cussed in [2] and computes its pseudo-inverse. This was implemented for debug-
ging and testing purposes.

'The reconstruct method is implemented by calculating the cross correlations of the
non-uniformly sampled input signal. A helper function is defined in the
Reconstructor interface that calculates the cross correlations of the input. To
speed up this function the multiple correlations are vectorised into a number of ma-
trix multiplications. The pseudo-inverse is then multiplied by these cross-correlations
to reconstruct the signal.

Wessel

The reconstructor, as reformulated by Wessel Bruinsma, is a variation on the re-
construction technique implemented by CrossCorrelation. The theory is thor-
oughly described in Part I of this thesis. The algorithm takes the same parameters?,
namely the maximum lag estimated of the cross-correlation of the cosets and the
sampling matrix used by the non-uniform sampler. This is required for the recon-

struction algorithm.

Similar to the other reconstructor implementation, a switch to disable the caching
mechanism has been implemented. This was also implemented for debugging and
testing purposes. Like the other reconstructor, this reconstructor generates an R-
matrix and computes its pseudo-inverse. Details on this algorithm may be found

in Chapter 8.

'The reconstruct method is implemented by calculating the cross correlations (again)
of the non-uniformly sampled input and multiplying it with the pseudo-inverse.

From an implementation perspective, the structure of the pseudo-inverse of the
Wessel algorithm maps better on the data structures of NumPy. NumPy’s basic array
data structures are in row-major order>. The final phase of both reconstruction steps
is reshaping the cross-correlation matrix to a single column vector and multiplying

2There are actually four parameters: L, N, M and C. However, N and M can be determined from
the shape of C.

3This is the standard way of saving an array in C, two notable exceptions that save their arrays in
column major order are MaTLAB and Fortran. Column major order is often called Fortran style.
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it with the pseudo-inverse. This operation is more memory efficient in the Wessel
reconstructor.

16.4 Detection

A single kind of detector is implemented. The Strategy pattern is still used be-
cause of possible future additions. All detectors have to implement the interface
Detector , which has a contract for a detect method.

Ariananda

The Ariananda detector (named after the writer of [2]) implements the theory de-
scribed in Chapter 10. It takes L, K, C, R', R., window length and P, as its
parameters. Its current implementation requires its input data to be originating
from the Wessel reconstructor class®*.

It implements the detect method by calculating a threshold (referred to as 7 in the
theory) and comparing that with the PSD of the signal. It makes use of information
of the wessel reconstructor and the sampler in question to make a better estimate

of a threshold for the signal.

4Tt can also be implemented for CrossCorrelation but requires some adjustments. This has not
been implemented.
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Detector

detect()

T

Ariananda

triangle
window_length : int

calc_threshold()
detect()
estimate_sigma()
generate_Cry()
generate_Csx()
generate ryexp()
parse_options()

Figure 16.5: The UML diagram of the detectors
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17 Presenter - The Supervisor

In the Model-View-Presenter architectural pattern, the presenter forms the glue
between the model and the view. The code is contained in the spectral.supervisor

sub-package.

b '
' Model :
' '
, Process 1 Process 2 Process 3 —_—
1 - 1
! Generator Reconstructor Detector :
' '
e o o = o e e e e e e = = e e e e = e e e e e e e = e e = = e e e e e e = e e e e e e e e e e e e e 1
L e e '
: Presenter '
l :
'
' Process 5 External Process 6 '
! : = ¢
' Settings WebSocket Settings server Data WebSocket !
'
'
]
]
1

2
A

1

1

'

'

]

. Process 4
' Web server
1

]

_____________________

Figure 17.1: 'The presenter and the central role it fulfills in the system

'The model notifies the presenter whenever its state changes, which will then trigger
the presenter to update the view using the new data. At the same time, the view
notifies the presenter whenever a user interacts with it, upon which the presenter
will take the necessary actions to reflect this user-event in the model. These inter-
actions are shown in Figure 17.1 and will be described in detail in the rest of this
chapter.

The presenter’s tasks can be summarized as follows:

* Coordinate model and view actions.
* Manage system-wide settings during runtime.

* Update the view using current model data.
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Control of model and view will be described in Section 17.1. After this, the subject
of system-wide execution parameters will be dealt with in Section 17.2. Finally, we

will get into the matter of model-view interaction regarding settings and data in
Section 17.3.

17.1 Primary control

Coordinating both model and view is primarily handled by the Python script run.py.
This script may be executed with a number of command-line arguments:

f_samp Specifies the sampling frequency the USRPs should operate at.

L Specifies the L-parameter throughout the system, which determines the dimen-
sions of various vectors and matrices.

source Specifies what module should be used as a data source for the system,
choices are the USRP, various theoretical sources such as a sinusoidal and
a locally saved dump file that was previously recorded.

snr When a theoretical source is selected, this specifies the amount of Gaussian
noise that should be added to the signal. Used to test the system’s perfor-
mance.

dump When alocal data dump is selected as source, this specifies where the dump
file is located.

ip When a USRP is selected as source, this specifies the IP-address of the USRP
that should be used for data-acquisition.

controlport Specifies the port at which the WebSocket (see Section 17.3) that
handles control of the system should connect.

dataport Specifies the port at which the WebSocket that handles the data streams
for external access should connect.

Using the parameters set by the user or a set of predefined defaults, The presenter
will initialise each subcomponent in a separate process (using Python’s Process,
from the multiprocessing library in [43]), allowing tasks to be handled concur-
rently. The current implementation runs six processes alongside each other, whose
behaviour is defined in processes.py Python script. We defined the following six
processes:

1. 'The generator and sampler, this can be any combination of one of the sources
in Section 16.1 and one of the samplers in Section 16.2.

2. 'The reconstructor, from Section 16.3.

3. 'The detector, from Section 16.4.

4. 'The web server, an important component of the view, as will be described in

Chapter 18.
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5. The control WebSocket server, which exposes the model’s settings so that
they can be modified from external applications (like the view).

6. The data WebSocket server, which exposes the model’s currently processed
data for external applications.

These processes need to be able to exchange data. This process is called inter-process
communication (IPC). For example, the reconstructor process needs data gener-
ated by the generation process to perform its reconstruction. This is implemented
using a number of Python Queue s (from Python’s multiprocessing library in [43]),
wrapped in a class that implements safe queuing and de-queuing by means of locks

and None return types'.

17.2  Settings server

Managing system-wide settings and allowing the user to modify them at runtime
are also tasks of the presenter. System settings are made available between difterent
Python processes using the Python package Pyro. This package enables us to use
Remote Procedure Calls, which means we can use external objects over sockets as
if they were local. In our system it functions mainly as a means of IPC on the local
machine, but in theory it could be used as a central settings server from which a
distributed network of computational machines get their settings and a number of
views can push their settings to. This way of having system settings managed by a
single object maps to the Observer design pattern [44].

17.3 WebSockets

To expose model settings and result data to external applications the system makes
use of the WebSocket-protocol. The WebSocket protocol defines a full-duplex
single socket connection that can be used to send messages between a client and
server. The WebSocket specification was initially implemented in JavaScript, but
nowadays interfaces are available in many other programming languages as well,
including Python. Multiple packages even exist, of which Autobahn was chosen,
because of its ease of use and clear examples.

Factories and Protocols

Autobahn implements the WebSocket specification using another widely used Python
package called Twisted, which is an event-driven network engine. When using Au-
tobahn, a WebSocket server is defined by a factory object and a protocol object.
A factory is, simply put, an object that can create other objects, which is a basic
object-oriented programming (OOP) design pattern [44]. A factory is created for
both the WebSocket servers once, at runtime, when their respective processes start.

IThe default queue raises an exceptions when trying to dequeue an empty queue, which is not
desirable behaviour in this application.
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From that point, either factory will create a protocol object for every client that con-
nects to the server. The factory will perform some initialisation on the protocol and
pass a reference of itself along with it, so every protocol instance shares the same
factory object, more or less like a parent.

The protocols themselves define the behaviour of the WebSocket server upon var-
ious events. Both protocols handle the same events, which are relatively straight-
forward:

onConnect Triggered when a client tries to connect to the server.
onOpen Triggered after a connection has been successfully established.
onMessage Iriggered when the server receives a message from the client.

onClose Triggered when a connection with a client is closed.

Settings

The settings WebSocket server uses Pyro to access the model’s settings and makes
them available to any client that connects at request. The settings WebSocket server
is defined by the ServerProtocolControl protocol class and the
ServerProtocolControlFactory factory class. Whenever a client connects
(consecutively triggering onConnect and onOpen ), the protocol will register itself
with the parent factory. It will also send the connected client a message contain-
ing every current setting, so that the client may initialise itself correctly. When-
ever a client sends an updated setting over the WebSocket connection (triggering
onMessage ), the protocol forwards the update via the Pyro settings object and
makes sure any other client is notified of the changed setting via the parent factory,
which relays the message to all clients that are currently registered by the factory.
Finally, when a client disconnects, its associated protocol will unregister itself with
the factory before going out of scope.

Data

The data WebSocket server publishes model data to any client that connects to it.
The data WebSocket server is defined by the ServerProtocolData protocol class
and the ServerProtocolDataFactory factory class. It functions in a similar
manner as the settings WebSocket server, but maintains a direct data connection
with the model using queues as described in Section 17.1, instead of using Pyro.
The generator, reconstructor and detector processes each have their own queue to
which they push the currently processed data, so that it can be made available on
the WebSocket. The queues and buffers are both held by the parent factory, so every
protocol will read the same data. The data WebSocket server does take any action
when a client connects. Registering itself with the parent factory is not needed
because connected clients do not interact with each other. Any connected client
may send the server a request for a certain data stream, coming from the generator,
reconstructor or detector process. When this happens, the associated protocol will
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ask the parent factory to update its data buffer for the correct process. Finally, the
container will be encoded into a string using JSON? and send to the client.

2JavaScript Object Notation, a standardised way to express objects using a string.






18 View - Visualisation & Control

The last part of the system design consists of a web-based graphical user inter-
face (GUI) that allows for easy control and visual verification of the system and its
status. 'This component therefore fulfills the role of view in the design’s Model-
View-Presenter architecture. It is contained in the sub-package spectral.web.

E View E
: Web server Web application :
. Python (Flask) < N HTML/JavaScript !
: Back-end Front-end !

Figure 18.1: The view

'The view can be roughly divided into a server-side part (or back-end) and a client-
side part (or front-end). This is shown by Figure 18.1. The server-side system,
written in Python, prepares the user interface for display on the client-side. The
client-side system is a web application, written in JavaScript, that handles the actual
presentation of the data, as well as any action the end-user might perform which
should have an effect back in the functional core.

The major advantage of using a GUI in the form of a web application is its (al-
most) guaranteed cross-platform support, as well as relatively easy development
and debugging, since most browsers are shipped with more than adequate devel-
opment tools. The choice for Python to write the back-end in was made so that
the Flask Python package could be used as web server. Flask allows the program-
mer to quickly set up a simple web-server to serve the web application with. The
front-end itself is developed in JavaScript, which is the de-facto scripting language
for client-side web-development.

This chapter describes each of the individual parts of the visualisation software.
First, the web-server (back-end) is dealt with, an indispensable component that
makes the web application accessible within the network for whoever wants to
connect. This section will describe how the web-interface is constructed by the
server before being presented to the user and will touch on subjects like the use of
templating and predefined elements to generate a web-page. Then, the switch to
client-side is made. This section will uncover the inner workings of the front-end
as it is presented to the user, in terms of both visualisation and control.
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18.1 Back-end

'The back-end’s tasks can be summarized briefly as follows:

* Handle client connections.

* Serve the web application to any client that connects.

Both tasks are largely handled by the Python package Flask, which was introduced
in Section 14.1. Using Flask, a series of routes’ may be defined. Clients can then
send a request to one or more of these routes, for example to request a web page like
the visualisation front-end. Flask will execute the code that is associated with the
specified route upon receiving a request, like rendering the visualisation front-end,
after which the result of this execution is sent back to the client.

Templating

For rendering a web page, like the front-end, Flask makes use of yet another Python
package called Jinja2. This package is a so-called zemplating engine, which renders
a web page using a predefined layout, containing some static content, but also an
arbitrary number of expressions that are interpreted and executed by Jinja2 upon
receiving a request to generate dynamic content.

18.2 Elements

Jinja2 can be used to generate an entire web page at once, but also to render a
single element of the page, such as a slider or a plot. In the design of the visualisa-
tion package, it was deemed preferable to easily swap in and out specific elements,
thereby obtaining a fully modular system. The web application is therefore set up
as a skeleton containing for example the page header and footer, as well as a grid-
like body that is used to hold the chosen page elements. This way the front-end is
completely modular. The programmer only has to pick a certain element, configure
it to display and/or modify the correct data or setting and choose its location in the
grid. The templating engine will render each element individually and then insert
them into the page body. The elements that were implemented and can be used to
construct the web application in this matter are listed below.

Text element Being the most simple element available, it is capable of displaying
a short string value. Such a string might reflect, for example, the status of a
certain component in the model. The text element is not a control element
and therefore its data is only directed from server to client.

1A route defines a request on a specific URL.
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Uptime

00:10:12

Figure 18.2: Text Element

Checkbox element The checkbox element allows the user to modify a simple boolean
value in the model’s settings. As an example, it might be used to toggle a
certain functionality. Being a control element, it maintains a bi-directional
connection with the presenter, so it can notify the presenter whenever a user
modifies its value and receive updates whenever another client modifies its
associated value. View-presenter interaction will be covered in Section 18.3.

Jammer

Enable:

Figure 18.3: Checkbox Element

Slider element A more flexible element that allows to user to set and observe the
value of a certain (numerical) parameter in the system. Like the checkbox,
this is a control element that is bi-directionally connected to the presenter.

Antenna gain

Figure 18.4: Slider Element

Visualisation element The last and most complex one available, this element presents
the current results of any of the three sub-processes as carried out by the
functional core (generation/sampling, reconstruction, detection). The user
can pick any of the three datasets to display, which may then be displayed
using a real-time spectrogram or an FFT-style plot, or, when detection data
is selected, a column diagram that shows at what frequencies an actual signal
is determined to be present. The spectrogram is developed by our team and
allows the user to observe how the frequency spectrum varies over time by
depicting a certain frequency content with a certain colour shade. The FFT-
plots and detection column graphs are generated by the JavaScript plotting
library Highcharts. The code for both plots mainly consists of setting up High-
charts for the correct display of the incoming data, preparing the incoming
data for display (apply scaling, etc.) and calculating the correct plot limits to
yield a clear picture. The FFT-plot is also equipped with averaging function-
ality, which can be used to smooth the rather variable input data for a more
stable image.
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© FFTPlot () Spectrogram  None
FFT plot: reconstructed data  original © Reconstructed ~ Detection

0

-25

[dB]

|
2 404M

-125 I I
2 400M 2 402M

I I
2396M 2398M
Frequency [Hz]

Averaging

Figure 18.5: FFT Visualisation Element
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Figure 18.6: Spectrogram Visualisation Element
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Figure 18.7: Detection Visualisation Element

Each of the elements consists of server-side and client-side logic, which is written
in Python and JavaScript, respectively. The server-side logic consists of a class that
contains some of the element’s properties, like a unique ID, title and a reference
to a Jinja2 template as previously described, that is rendered whenever the element
is used (when the client requests the web application). The client-side logic is a
JavaScript object that defines the element’s dynamical behaviour, such as handling
user-input and/or server-sent updates.
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Figure 18.8: The graphical user interface on multiple devices

Figure 18.8 shows a sample configuration of the view using the described elements
on multiple devices.

18.3 Front-end

As mentioned, the front-end consists of a web page containing the elements as
generated by the server. The user is presented with a certain combination of the
elements that were described in the previous section, that allows them to manipu-
late settings back in the model and verify its results. The front-end is largely based
on Bootstrap, which provides a solid base to build the rest of the interface on.
Bootstrap provides the HTML (HyperText Markup Language, used to define the
structure a web page), that defines the grid in which all elements are consequently
rendered. Bootstrap also handles the scaling of the entire application for different
screen sizes, so the application remains usable, even on smartphones.

Presenter interaction

'The model has to be updated upon any user interaction that takes place in the view.
At the same time, Ul-elements in the view should be able to access the most recent
data from the model. For this to happen, a connection has to made between model
and view. In Chapter 17 we introduced the settings and data WebSocket servers,
which were built for this goal.

'The web application connects to both of these WebSockets using JavaScript’s built-
in WebSocket implementation, wrapped in the Control and
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Visualisation objects, respectively. These two objects are implemented follow-
ing the Singleton-pattern, which is a design-pattern that ensures that only a single
instance of the given object may exist at all times (bearing similarities to a static
instance of a class in some other languages), which is useful since both Control
and Visualisation handle all WebSocket related actions for the entire web ap-
plication [42, p. 127].

The Control object connects to the settings WebSocket server from Section 17.3.
Whenever a user modifies a setting, e.g. by altering a slider value, Control will
send a message over the WebSocket to the presenter to notify it of the update. After
this, the presenter will publish the update to the model. The various subcomponents
of the model may implement a method to read the most recent system settings
that might concern them to process setting updates that might concern the. The
presenter will also broadcast the to all other connected clients. Upon receiving such
an update, the Control object will execute the update routine of the appropriate
element, for example moving the slider to the newly received value. This process
ensures that the current program settings are synchronised among every client.

The Visualisation object connects to the data WebSocket server from Sec-
tion 17.3. It keeps track of the currently shown data by registering each plot
present in the application. Whenever a plot is registered, Visualisation will
send a message over the WebSocket, requesting the presenter to send the current
data of the required type. The presenter will respond by sending an object contain-
ing the requested data and some additional meta-data. Upon receiving this data,
Visualisation will pass it through to the element that first triggered the re-
quest, which will then re-render the plot. After this, Visualisation will, again,
send a request to the presenter, restarting the cycle. This process will continue until
the user picks another data type for display, or disables the plot altogether, which
will trigger Visualisation to unregister the plot and safely destroy it. Carefully
keeping track of every plot in the application and the data type it displays like this
prevents memory-leaks and bandwidth wasted on unprocessed plot data.






19 Hardware

19.1 USRP N210

Introduction

'The hardware sampler used in our system is a USRP N210, a software defined radio
(SDR) produced by Ettus Research. 'This radio is equipped with the SBX front-end,
which has frequency range of 400 MHz to 4400 MHz that can both transmit and
receive simultaneously. This signal that enters the radio is first amplified and then
mixed down by a two local oscillators with a 90 phase shift. Then the resulting two
signals are sampled by two 100 MS/s ADCs resulting in an I and a Q_signal. Be-
cause the local oscillators have a 90 phase shift the resulting signal is quadrature or
1Q sampled. With the information from both signals we can measure the complex
envelope of the signal.

The USRPs can also be used as a transmitter using the DAC and the same local
oscillators. We used this during the testing of our design to generate test signals.
However this is not used in our final design.

These radios are connected to a PC by using gigabit Ethernet, thus limiting the
effective sample rate to 25 MS/s with a 16 bit resolution or 50 MS/s with an 8 bit
resolution. If you want to use the full potential of the internal ADC (2x 100 MS/s)
and DAC (2x 400 MS/s) you have to write your own firmware for the internal
FPGA.

Drivers

The communication between the USRPs and our software is handled by the UHD
driver! written by Ettus Research.

In the first version of our software we built everything using GNU Radio. We used
the gnuradio-uhd blocks to get samples from our USRPs. Soon we switched to a
pure Python version, but we still used the gnuradio-uhd library to retrieve our sam-
ples. We used a specific helper function gnuradio.uhd.finite_acquisition
from the GNU Radio libraries. This helper function started a low level stream,
waits for n samples, closes the stream and returns the samples to the caller.

IThe code for this driver can be found online at: https://github.com/EttusResearch/uhd.
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'The USRPs have an automatic calibration for the DC offset introduced by the
local oscillator after the mixer. However due to a bug in the USRPs, every time a
stream is started this DC calibration is reset. The effects of this bug can be resolved
by limiting the bandwidth and shifting the local oscillator frequency out of the
observed spectrum. This effectively halves our usable bandwidth.

To work around this bug we had to write our own low level code to stream samples
from the device. We wrote C++ code to connect to the USRPs, synchronise them
and start a stream. The received samples are then send through a socket to the rest
of the system for further processing. This was not an easy task, but has the added
benefit that our system no longer depends on GNU Radio and we have very low
level control over the precise operation of the USRPs.



20 Software quality & Testing

20.1 Introduction

In this chapter we will discuss the methods we used to write a large software prod-
uct. Traditionally this is not part of a bachelor Electrical Engineering. However
we feel the importance of proper code quality is one that every engineer should
harness in the ever more software oriented industry. To achieve this we consulted
some classic works on the subject. Examples of this are

* Code Complete 2: A practical handbook of software construction [45];
* Clean Code: A handbook of agile software craftsmanship [46];

* The Art of Unix Programming [47];

* Learning Python [48];

* Dive into Python [49];

* Design Patterns: Elements of Reusable Object-oriented Software [42].

Firstly the importance of testing immediately became clear. The second observa-
tion is the importance of doing good design upfront. The choice of correct data
structures and algorithms makes all the difference. This can be seen in the previous
chapters when we refer to design patterns. A third theme is maintainability. This
is something that lives through proper documentation and code quality and will be
discussed below as well. Lastly we wanted to evaluate advice from Code Complete
2, a standard work on programming techniques, and how this applies to the current
state of our software stack.

20.2 Testing

Unit testing is a way of doing verification on code by checking each function with
set of known inputs and outputs. Integration tests are a means of checking a set of
modules/functions working together for known inputs and outputs.

With a combination of unit testing and integration testing, the code can be verified
on the function level. With the help of special tools you can specify the expectations
about the working of a function, in our case the Python unittest and nose library.
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Table 20.1: A table showing the coverage of our tests

Name Statements Miss Cover
spectral.core 5 0 100%
spectral.core.detection 2 0 100%
spectral.core.detection.ariananda 72 5 93%
spectral.core.detection.detector 5 2 60%
spectral.core.helperfunctions 38 2 9%
spectral.core.reconstruction 2 0 100%
spectral.core.reconstruction.crosscorr 42 5 8%
spectral.core.reconstruction.reconstructor 54 26 52%
spectral.core.reconstruction.wessel 46 1 98%
spectral.core.sampling 4 0 100%
spectral.core.sampling.coprime 17 0 100%
spectral.core.sampling.minimalsparse 11 0 100%
spectral.core.sampling.multicoset 21 0 100%
spectral.core.sampling.sampling 7 0 100%
spectral.core.source 5 0 100%
spectral.core.source.complex_exponential 10 0 100%
spectral.core.source.filesource 21 0 100%
spectral.core.source.rect 16 0 100%
spectral.core.source.simulatedsource 24 11 54%
spectral.core.source.sinusoidal 10 0 100%
spectral.core.source.source 7 2 1%
spectral.core.source.usrp_n210 42 32 24 %
TOTAL 461 86  81%

'The functions are then evaluated with predefined input out put pairs, such that their
behaviour can be verified.

For the verification we also used coverage. This extension on our unit testing li-
brary also keeps track of which lines of code are run during your tests. If certain
lines of code are never run, you know your tests are incomplete. An example of this
can be found in Figure 20.1. In this output a certain branch of an if statement is
never taken.

Sometimes it is very easy to write specifications for the correct output of a function.
However with certain functions in the reconstructor or the detector, the only way
to verify the results was to check them according to known output matrix. These
matrices were generated by a MATLAB script that we assumed was correct!.

Our current tests cover 81 % of our model code. Most of the untested parts involve
10 operations (caching of the matrices, filesources and USRP’s) but there are still
some functional tests missing, most notably the ones for CrossCorrelation. The
results can be seen in Table 20.1.

These MATLAB scripts were written by the people who were working on the theory.
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if (ruler_length - 1) not in sparseruler:
raise NotImplementedError ("Values other than " + str(sparseruler.keys()) + " not implemented.")
return sparseruler[ruler length - 1]

Figure 20.1: Coverage output of a branch that is never taken

20.3 Documentation

For the documentation we used Sphinx. Sphinx is a documentation generator that
can build a API reference from the docstrings in our code?. Sphinx makes use
of Python’s introspection property which allows it to get all the dosctrings and
generate an automated API reference from this. This reference is supplied alongside
this report.

20.4 Qualities of good code

We will discuss the quality of our code according to the definitions from Code
Complete 2 about external and internal characteristics of quality code. External
qualities are qualities the user of the software will notice. Internal qualities are only
noticed by the developers of the software.[45]

External qualities

“Correctness is the degree to which a system is free from faults in its specification,
design, and implementation.” For our design we used extensive testing to verify the
correctness of our code and its results. Our algorithms are base on peer reviewed
articles from established authors. This is further confirmed by our automated test-

ing.
“Usability is the ease with which users can learn and use a system.” To easy the
adaptability of our system we provide an extensive API documentation of every

function of our code. This makes it easy to use the existing functions to expand the
system to your own needs.

“Efficiency is the minimal use of system resources, including memory and execution
time.” Our design is built with the goal of high performance (see Chapter 21).
While writing the code we thoroughly optimised our program by making use of
profiling. We identified bottlenecks and removed them if possible. We also tried
to optimise our algorithms and data structures (e.g. using sparse matrices).

“Reliability is the ability of a system to perform its required functions under stated
conditions whenever required — having a long mean time between failures.” From
the Art of Unix programming[47]: “The rule of repair: when you must fail, fail
noisily and as soon as possible”. In our code we have multiple checks on input
data, when the data is not correct it notifies the user and shuts down. With this
method we found bugs immediately, and this resulted in very stable system.

2A docstring is a comment on the first line of a function indicated with the triple quote.
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“Integrity is the degree to which a system prevents unauthorised or improper access
to its programs and data. The idea of integrity includes restricting unauthorised user
accesses as well ensuring that data is accessed properly — that is, that tables with
parallel data are modified in parallel, that date fields contain only valid dated, and so
on.” When transferring data between different processes we use thread-safe queues,
or remote objects. This ensures that no race conditions or other issues with parallel
data access can happen. We did not focus on preventing unauthorised access of our
data when building this system, this is something that has to be considered when
someone else then the user has access to the system.

“Adaprability is the extent to which a system can be used, without modification,
in applications or environments other than those for which it was specifically de-
signed.” Because we have written our system in python our code is runnable on all
hardware that is supported by Python. This includes all personal computers and
even embedded devices with a recent ARM or MIPS processor.

“Accuracy is the degree to which a system, as built, is free from error, especially
with respect to quantitative outputs. Accuracy differs from correctness; it is a de-
termination of how well a system does the job it’s built for rather than whether it
was built correctly.” Before building our system we wrote a specifications for our
system. Using testing we can verify that our system adheres to these specifications.

“Robustness is the degree to which a system continues to function in the presence
of invalid inputs or stressful environmental conditions.” Our system is not really
designed with robustness in mind. However there are multiple fail safes in the
system. For example when the sampler does not return the requested number of
samples, the frame is discarded and a new one is requested.

Internal qualities

“Maintainability is the ease with which you modify a software system to change or
add capabilities, improve performance, or correct defect.” Our system is designed
with modularity in mind. All components live in their own module and are not
dependent on each other. This makes it very easy to change all small part of the
system without interfering with the other parts. By making use of the strategy
pattern, different solutions for one problem (e.g. sampling) can be easily added.

“Flexibility is the extent to which you can modify a system for uses or environ-
ments other than those for which it was specifically designed.” The system we built
is usable for all kinds of high performance signal processing. Instead of samplers,
reconstructors and detectors other kind of signal processing modules can be im-
plemented. Also by using the Model-View-Presenter pattern the code is loosely
coupled. For example, it is very easy to write another GUI for the system while
keeping the other logic intact.

“Portability is the ease with which you can modify a system to operate in an environ-
ment different from that for which it was specifically designed.” See Adaptability.

“Reusability is the extent to which you and the ease with which you can use parts
of a system in other systems.” For all our signal processing blocks we wrote docu-
mentation and an API manual. This makes it easy for others to use our modules in
their own system.
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“Readability is the ease with which you can read and understand the source code
of a system, especially at the detailed-statement level.” Our code is written in
Python, which is designed to produce very readable code. When our code is not
immediately clear to the reader comments are added to improve legibility. Special
documentation strings are added to each function to explain the working of each
function and explain its arguments.

“Testability is the degree to which you can unit-test and system-test a system; the
degree to which you can verify that the system meets its requirements.” Our func-
tional core is almost completely under test. Only the code that interfaces with
physical hardware is not testable. The functionality of the reconstruction and the
detector is checked with the output of the MATLAB scripts written by theory group.

“Understandability is the ease with which you can comprehend a system at both
the system-organisational and detailed-statement levels. Understandability has to
do with the coherence of the system at a more general level than readability does.”
By using proven design patterns (Model-View-Presenter) to design our system ar-
chitecture our system becomes more comprehensible. By separating parts of the
system it becomes much easier to reason about a piece of code and its working.






21 Performance

In this chapter the performance of the implementation will be discussed. First
we will introduce the measurements performed to evaluate said performance after
which we will discuss some practical implementations of these optimisations.

21.1 Profiling

A good metric for performance are profiling reports. Profiling reports describe the
time spent inside functions (execution time). They allow us to identify bottlenecks
in the system which slow down calculations. More often than not these have al-
lowed us to make crucial speed-ups in the system.

21.2 Algorithms and Data structures

Our initial step was to improve the algorithms and data structures involved. This
is usually seen as the first best way of improving performance. We used profiling
reports as an indicator to identify bottlenecks and improve the algorithms or data
structures only there were necessary as to keep the complexity of our code low!.

Sparse matrices

After the initial profiling reports it became clear that the dot product with the
pseudo-inverse in the reconstructor (see Section 16.3) formed a bottleneck. After
doing some inspection on the pseudo-inverse it appeared to be rather sparse. This
sparsity allowed us to use SciPy’s optimised sparse data structure. We chose the
rather standard csr_matrix data type. As noted by [31], the advantages of this
data structure are, amongst other, fast matrix vector products and better memory
efficiency. The speed difference for the reconstruct method is shown in Figure 21.1.

! As Donald Knuth, considered as the father of informatics, once said: “We should forget about
small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into
complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that
code has been identified.”[50]. The essence of this quote is that one should only start optimizing code
once it has been proven to be necessary as this usually increases the complexity of the code and thus the
maintainability. Maintainability is often only an afterthought but imminent for code that has to last.
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Figure 21.1: Reconstruction time (normalized over 1000 runs) versus number of
elements in matrix of sparse (dashed) and standard matrix (solid) data structure

Vectorisation

Another bottleneck was formed by the calculation of signal cross-correlations. There
are a number of ways to perform this calculation:

* Expressed as a number of matrix multiplications.
* Numpy's correlate function.

* SciPy’s fftconvolve function.

Figure 21.2 shows that each technique has its own area of best performance. The
matrix multiplication works best for vector lengths of about 50 elements. Numpy's
correlate performs best from 50 until 400 elements and for everything above
that fftconvolve is the fastest.

21.3 Multiprocessing

Each major part of the model (source, sampling, reconstruction and detection) can
be run concurrently by means of implementing a pipeline. This is done by means
of multiprocessing. We spawn a separate process for each major computation: the
source & sampler, the reconstructor and the detector. This information is sent us-
ing inter-process communication (IPC). This introduces some overhead and delay,
but has the major advantage of allowing us to make use of multiple CPU cores.
Ultimately, it depends on the configuration of the parameters whether multipro-
cessing is advantageous, because IPC (which has to do memory transfers through
L3-cache) can be the bottleneck on less demanding parameter sets. Results of a
standard program run can be seen in Table 21.1. In this case a speed up of 48 %2
is achieved by the use of multiprocessing over serial execution.

2This is largely going to be dependent on the platform it was run on. In this case a mid 2015
Macbook Pro with an i7-4870HQ was used to run this benchmark.
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Table 21.1: Reconstruction times for N = 51, L = 3, K = 2000, with an OFDM
file source, a minimal sparse ruler sampler and the Wessel reconstructor, normalized
over 1000 runs

Method Single reconstruction time
Serial 3.60 ms
Multiprocessing 2.43ms

An issue that arose is that the current implementation of Apple’s accelerate, is not
compatible with multiprocessing. This is due to a bug® on Apple’s end. Instead,
OpenBLAS was used instead at a very marginal performance loss.

21.4 Results and Further Improvements

All in all, a system has been implemented that allows for real-time compressive
spectrum sensing. Future work can be sought in the implementation of additional
techniques for parallel processing. CUDA and OpenCL are good candidates for
this (especially because of the sparse structures involved, which are ideal GPU ap-
plications). Furthermore, a good study of the memory structures throughout our
calculations could prove to be beneficial for further speed-ups.

3 As noted on the NumPy's issue tracker this is an issue Apple is not addressing. A workaround is
to use a Python 3 feature which allows process spawning rather than forking which solved this issue.
Unfortunately due to dependencies on GnuRadio on earlier stages of this project Python 2 was used.
For more information see https://github.com/numpy/numpy/issues/5752.
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22 Future Work

As of now we have build a flexible software framework. We split the implementa-
tion in part hardware and part product implementations.

22.1 Hardware Implementations

There are a number of configurations discussed in Chapter 9 that can be applied
with different advantages and disadvantages.

Circular-sparse-ruler hardware implementation

A hardware implementation of samplers combined in a setup discussed in Sec-
tion 9.3. It allows for a high performance setup with optimal reconstruction reso-
lution. This implementation is focused on high-performance compressive spectrum
sensing.

Coprime hardware implementation

A hardware implementation of two samplers in coprime setup discussed in Chap-
ter 9. It would involve two samplers syncing on a combined period whilst the
individual sample frequencies of the samplers would have a coprime ratio. The use
case would involve optimal performance for least cost. Coprime uses non optimal
“ruler” but is implementable with two samplers only.

The software coprime truncater uses two input sample vectors, with a different
number of samples from two samplers with different sample rates. The sampling
matrix is constructed as with the normal coprime sampler. The two input vectors
are then transformed into one output vector that matches the sampling matrix.

Synchronisation of USRPs to implement coprime sampling

For our implementation of co-prime sampling we needed to synchronise the sam-
pling of two USRPs. This can be accomplished by connection them with a special
MIMO cable. This allows them to internally synchronise their sampling clock. It
even allows them to schedule commands at exactly the same time, so they can start
sampling at exactly the same moment.
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To verify that our synchronisation is correct, we dumped two frames from the same
moment in time to a file. If we plot them on the same time scale, as in Figure 22.1,
we can see that they align almost perfectly. If we zoom in on the second burst in
the signal, see Figure 22.2, we can see the offset due to the local oscillator offset.

'The only offset we have is from the phase offset between the two local oscillators of
the USRPs. After each tune command the two USRPs have a random phase offset
of —180 to +180. We don't know yet if that influences our results. If that is the case
we can calculate this lag by looking at the cross-correlation between the two USRPs
or by transmitting a reference pulse after each tune command and calculating the

delay.

At this moment the synchronised sampling works, but something is going wrong
in the processing or visualisation of the data. We did not have the time to find
these problems and solve them. This is something for future work.
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Figure 22.1: Output of the two samplers
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22.2  Product Implementations

Distributed network

In the current implementation a lot of multiprocessing is done as discussed in
Chapter 17. A variation on this is to run a distributed network of nodes all recon-
structing part of or the entire spectrum and recombining this on the views. This
distributes the computing power amongst several nodes while the views have to do
very little processing. Because there are several libraries available (such as Pyro4)
which allow to do this kind of computing on a standard LAN network existing
networks can be used for this purpose.

Mobile platform

Our system could also be used in a distributed system that uses mobile devices (e.g.
mobile phones) for collaborative spectrum sensing. This enables mobile network
providers to keep track of a database of the current spectrum usage. This could
then be used for dynamic spectrum allocation where devices can communicate on
the unused part of the licensed spectrum if the primary user (i.e. the user who paid
for the license) is not using the specific frequency.



23 Discussion

In this chapter we will reflect on the specifications given in Section 13.1.

General
Recall that the general requirements were:

* The implementation needs to be fast.
* 'The implementation needs to be modular.

* The implementation needs to flexible.

By using multiprocessing and profiling, we achieved a fast and efficient implemen-
tation of our algorithms. By using proven design patterns we obtained a modular
and maintainable code base. Due to the use of Python, our solution is portable and

flexible.

23.1 Software

Recall that the software must be developed such that

1. it implements the generation and/or sampling of a theoretical spectrum;

2. itimplements the emulation of non-uniform sampling techniques on Nyquist-
sampled spectra;

3. it implements the reconstruction of the sampled spectrum, using techniques
from Chapter 8;

4. it implements the detection of any signal present in the reconstructed spec-
trum, using techniques from Chapter 10 and

5. it is able to clearly present the results of generation, reconstruction and de-
tection to the user.

All of the above musts have been implemented. Therefore the requirements have
been met.

Also recall that the software should be developed such that
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1. the highest possible performance may be achieved;
2. it is designed in a structured and maintainable way and

3. it is be usable on multiple platforms.

Equivalent to the general requirements, these shoulds have been taken into account
when designing and writing the software and their accompanying requirements
have been met.

23.2 Hardware

Recall that with respect to the hardware the software must allow for

1. the use of a Ettus Research USRP UHD N210 transceiver to obtain data;

2. the use of such a device to implement compressive sensing and

3. the use of two (or more) of these devices to implement collaborative sensing.
Almost all of the above shoulds have been met. Only collaborative sensing has only

partly been implemented. We have achieved the synchronisation of two USRPs,
but were not able to implemented the reconstruction step in time (see Section 22.1).

And recall that the software should allow for
1. fully utilising the USRPs capabilities.

Our PCs are not able to compute the various steps in the algorithms fast enough to
handle the 25 MS/s coming from the USRP. The computations could be sped up
by finding more efficient algorithms or by using more powerful and/or distributed
hardware for the computations.



Part I11

Final Thoughts
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24 Conclusion

After approximately two months, we can put our minds to rest and conclude our
final work. Despite the division of this work into two parts, we consider it impor-
tant to reflect upon those parts in one conclusion, since together, they form our
final product.

We have developed a theoretical framework whose specification are mostly met. Its
performance has been evaluated and we can conclude that the framework provides
the theoretical necessities to enable real-time spectrum sensing. Subsequently, we
have developed a modular software toolkit which implements the developed theo-
retical framework. Together their performance has carefully been assessed. Coura-
geously, we dare to say we have made a good attempt at answering the question
whether we can develop a toolkit that enables real-time high-performance wide-
band spectrum sensing.

'This thesis has been the desired opportunity demonstrate the knowledge we have
accumulated the past three years. Although it may be a small step forward in the
area of wideband spectrum sensing, we hope that we have encouraged the reader
to follow the path we set out.
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A Ethical paragraph

This chapter is concerned with the ethical aspects of our business plan. The develop-
ment of our product, a toolkit that enables high-performance wideband spectrum
sensing, has several possible consequences. This ethical paragraph will first discuss
some of those possible consequences, to continue with a description of our policy to
address those issues, and other issues that have to be addressed in a business plan.

A first possible consequence of introducing our technique is a rapid acceleration
of developments in Cognitive Radio which, eventually, may lead to a wide-spread
use of Cognitive Radio networks. This in turn, may lead to increased interference
in networks of licensed users. Those users then experience deteriorated network
performance, which may hurt their applications. Another possible consequence of
our technique is related to its misuse. Since the technique allows for fast wideband
spectrum sensing, it also allows for fast tracking of user signals. This tracking could
be used to effectively eavesdrop communication on a large scale.

We take an utilitarian point of view at the responsibility of application of this prod-
uct. Since we can not exactly foresee all possible applications, nor do we have the
capability to influence this, we will only take responsibility for the product itself.
We expect that telecom agencies will regulate wide-spread use of wideband spec-
trum sensing and will therefore represent the interests of, for example, telecom
providers, civilians and the military. By adhering to the local legal requirements
of telecommunications we expect that misuse of our toolkit is reduced to a bare
minimum, while maintaining a commercially viable situation for our company.

Environmental and safety issues are of less concern in our business plan, since our
company is targeted at developing and maintaining a software toolkit. It does not
focus on the actual hardware on which it may be used, and it therefore does not
need a production line which entails those problems. Furthermore, our company
can be regarded as a high tech company, and thus our employees will have to possess
highly specialised knowledge in the area of wideband spectrum sensing and high-
performance software development. We will therefore not impose gender quota,
since this can conflict with the need to hire highly educated employees and may
have severe consequences for the operation of the company.
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B

Derivation of the reconstruction
algorithm

In this appendix we derive the algorithm discussed in Chapter 8. The derivation
aims to be an accessible, yet complete explanation which discusses all details nec-
essary for implementation. Table B.1 presents an overview of the variables. Some
variables are not discussed yet and the meaning of their names will become clear
during the derivation of the algorithm.

Variable Description

M Number of cosets

N Downsampling factor such that every coset samples the input
signal once every N samples

L Support of 7, ,,.[m]. This means that r,, ,,. [m] = 0 for |m| > L.

x[n] Input signal

re[m, n] Autocorrelation of the input signal

yi[n] Output of coset i

Ty.y;Im,n]  Cross-correlation of the outputs of cosets i and j

¢in] Signal which determines the output of coset ¢

cijlm] Deterministic cross-correlation of ¢;[n] and ¢;[n]

z;i[n] Helper variable related to x[n| and y;[n]

72,2 [m,n]  Cross-correlation of z;[n] and z;[n]

r;[k] Aggregation of r;[(k + 1)N — 1] to ry[kN + 1]

C; ;i Aggregation of ¢; j[—N + 1] to ¢; j[—1]

cj)'j Aggregation of ¢; j[1] to ¢; ;[N — 1]

Ty, y; Aggregation of r, ,, .[L] to 7, ,, . [—L]

r Aggregation of r,[LN] to r,[—LN]

R, ; Convolution matrix of ¢; ;[m]

r, Aggregation of ry,, ,,, tO Ty, o

R Aggregation of Ry ar to Ry q

n; Variable such that ¢;[n] = 1 for n = n; and zero otherwise

Table B.1: Overview of the variables used

Consider the input signal to be a random stochastic process. To relate the output
of a coset to the input signal, we need some mathematical constructs.
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Figure B.2: Relationship between y;[n], z[n] and ¢;[n] in the case that N = 4 and
¢i[n] = 1 for n = 1 and otherwise zero

B.1 Construction of the output of a coset

In Section 8.3 we have seen that every coset samples the input signal every N sam-
ples. However, different cosets sample at different moments. To keep the way a
coset samples the input signal as general as possible, we associate every coset ¢ with
a signal ¢;[n] which specifies the way coset ¢ samples the input signal. This signal
¢;[n] is constructed such that ¢;[n] = 0 for n < 0 and n > N — 1. To illustrate the
way y;[n], z[n] and ¢;[n] are related, suppose that N = 4. In this case, Figure B.1
shows how y; [n] is related to z[n] by ¢;[n]. That is, every group of N samples of the
input signal yields one sample of the output of a coset. This is done by multiplying
the samples in that group sample-wise by ¢;[N — 1] to ¢;[0] and then summing
them. Mathematically,

nN
vilnl= Y alklenN - k. (B.1)
k=(n—1)N+1
Equation (B.1) precisely relates the output of coset i to the input signal.

Consider the case that ¢;[n] = 1 for a single n and otherwise zero. Then y;[n]
consists of the sample of every group of N samples of z[n]. This means y;[n] is an
N-decimation of the input signal. Figure B.2 illustrates this concept in the case
that N = 4 and ¢;[n] = 1 for n = 1 and otherwise zero.

To analyse Equation (B.1), we need a helper variable. Let
zi|n] = (¢; * z)[n] (B.2)

where * denotes the convolution operator. The definition of the convolution oper-
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Figure B.3: Relationship between z;[n], 2[n] and ¢;[n] in the case that N = 4

ator yields that

zi[n] = Z xlk]ein — K] (B.3)
= i zlk]ei[n — K], (B.4)
k=n—N+1

since ¢;[n — k| = 0for k < n— N + 1 and k > n. Figure B.3 shows how z;[n],
z[n] and ¢;[n] are related in the case that N = 4. By inspection of Equation (B.1)
and Equation (B.3), we obtain that

yi[n] = z;[nN].

B.2 Autocorrelation and cross-correlation

'The goal of the reconstruction method is to reconstruct the autocorrelation of the
input signal given the output of all cosets. The autocorrelation of the input signal
is given by

re[n, m| = E(z*[n]x[n + m)).

We assume that z[n] is a wide sense stationary process. This means that r,[n, m]
is independent of n. Therefore, we omit the n in r,[n, m] and denote r,[n, m| =
rz[m]. The cross-correlation of z;[n] and z;[n] is given by

T2z m] = E(z] [n]z[n + m]).
Similarly, the cross-correlation of y;[n] and y;[n| is given by

Since the outputs of the cosets are assumed to be readily available, r, . [n,m] can
be determined. We plan to estimate 7, [m] by making use of r, ,.[n,m].
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Figure B.4: Dependencies between 7, ,,.[m] and r, [m] defined by Equation (B.7)

B.3 Relating the autocorrelation of the input signal

Since x[n] is a wide sense stationary process, Theorem 11.5 of [51] yields that

Taiyz; [nam] = (cij % 14)[m] (B.5)
where
cijlml =" cilkle;[k +m]. (B.6)
k=—o0

This shows that r., ., [n,m] is independent of n, we means that we omit the n in
72;,2; [, m] once more. Now the independence of n implies that

T2,z IMN] = E(2;
= B(z

since we defined that z;[n] = y;[nN]. Therefore
Tyey; [m] = (5 % 72) [mN].

Consider Equation (B.6). We know that ¢;[n] = 0 forn < 0 and n > N —1, which
implies that ¢; ;[m] = 0 for |m| > N —1, since ¢; [k]c}[k+m] = 0 for [m| > N — 1.
So

o0

Tyi,y; [m] = Z rm[k]ci,j [mN— k]
k=—o00
(m+1)N-1
= Y relkleij[mN — K] (B.7)
k=(m—1)N+1

This is the desired equation which relates the cross-correlation of the outputs of
cosets ¢ and j to the autocorrelation of the input signal. We see that every element
of 7y, ,,[m] depends on specific elements of r,[m]. Figure B.4 illustrates these
dependencies.
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B.4 Estimating the autocorrelation of the input signal

To estimate the autocorrelation of the input signal, we assume that 7, ,, [m] = 0
for [m| > L. This assumption will be discussed at a later moment. If we inspect
Figure B.4, we see that r,, ., [L + 1] depends on r,[LN + 1] to r,[(L + 2)N — 1].
Since we have chosen ¢; j[m] arbitrarily, r,, ,.[L+41] = 0 implies that r,[LN +1] to
72[(L+2)N — 1] must be zero, since r, ,,.[L + 1] is not necessarily zero otherwise.
Consequently, if we evaluate ,, ,,.[m] = 0 for all |m| > L in a similar way, we
obtain that r,[m] = 0 for |m| > LN.

Since r;[m] = 0 for |m| > LN, all that remains is estimating r, [m] for |m| < LN.
Aggregating Equation (B.7) for |m| < L yields that

(L+1)N-1 LN
Ty L] = Z ralk]ei j[LN — k] = Z ralk]ei j[LN — kl,
k=(L—1)N+1 k=(L—1)N+1
LN-1
Tyi,y; [L—1]= Z Tx[k]ci,j[(L — )N —&],

k=(L—2)N+1

(—L4+2)N—1
ryew =L+ 1= > ralklei[(—L+1)N — K],
k=—LN+1
(~L+1)N—1 (~L+1)N—1
Tysy; [—L] = S ke [LN k= > rufkleij[~LN — k.
k=(—L—1)N+1 k=—LN

In reducing the limits of the sums iny, ,,.[L] and r,, ,,. [~ L] we used thatr, [m] = 0
for |m| > LN. Although these equations look complicated, they can be written
more compactly. To do this, let

ro k] = [ro[(k+ DN —1] -+ r kN +1]]7, (B.8)
c ;= [Ci,j [-N+1] - cm'[fl]} and
ey =lel] - csIN=1]].

If we look carefully, we see that

LN-1
Pyew, [L) =12 [LN]ei ;[0 + > rylklei j[LN — K]
k=(L—1)N+1

= r2[LN]e; 5[0] + ¢ re [L —1].
Similarly, we can write

Tyoy, [ L — 1] = ¢; e [L — 1] + v, [(L — 1) N]e; ;0] + cifjrw[L —2].

2¥)
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'The complicated system of equations now reduces to

Tyi.y; [L] = Tz [LN]C{,’]' [O] + Ci—jrﬂt [L - 1]5
Tyoy, [L — 1] = ¢; 1 [L — 1] +rz[(L — 1)N]e; ;0] + c;fer[L — 2],

]

Tysy; [—L + 1] = Ci_,jrw[_L +1]  +r[(=L+1)N]e; 5[0]  + C:jrl’[_L]’
Ty;,y; [*L] =c, T [*L] + TI[*LN}CZ',]' [OL

1,j° %

which can be conveniently written as the matrix equation

Tyi,y; [L] Ci,j [O] Cz_j Tz [LN]
Ty, L — 1] c;; cijl0] cj:j ro[LN — 1]
Tyiy; [-L+1] C,; Cij [0] C:Cj rz[—LN + 1]
Tlli,yj [_L] C’;j Ci 5 [0] ’I”i[—LN]

Denote the previous equation by
I‘yi)yj = Ri’jrw. (B9)

This equation relates the cross-correlation of the outputs of cosets ¢ and j to the
autocorrelation of the input signal. We can aggregate Equation (B.9) for all com-
binations of cosets. This yields that

Ty10 Ri1
= ry.
Cyar,yns R,m
Denote the aggregation of Equation (B.9) by
r, = Rr,. (B.10)

Equation (B.10) relates the cross-correlations of all combinations of outputs of
cosets to the autocorrelation of the input signal. Note that R is an M?(2L + 1) x
2LN + 1 matrix. If R has full column rank, then r, can be solved for using least-
squares, which involves solving the normal equations. These normal equations are
given by

R'r, = R"Rr,. (B.11)

Alternatively, the least-squares solution can be obtained by making use of the Moore—
Penrose pseudoinverse. Therefore, if R has full column rank, then

RTI‘y = I‘z (B.lz)

where RT denotes the Moore-Penrose pseudoinverse of R. We can use Equa-
tion (B.11) or Equation (B.12) to estimate the autocorrelation of the input signal
if r,, is known. This concludes the estimation of the autocorrelation of the input
signal.
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1 2 N N+1 N+2
cil0]  eiyl] e IN=11 0 0

0 cigl=N+1] - eyl es0] el

0 0 e 0 0 cij[-N+1]

Figure B.5: Upper left corner of R; ;. The column numbers are shown and the
important elements are highlighted in red.

B.5 Unicity of the estimation

Since Equation (B.11) is used to estimate the autocorrelation of the input signal,
we have to make sure that R has full column rank. We will do this by inspecting
the structure of R. Since R depends on ¢;[n] solely, we start by analysing ¢;[n].

In the construction of the output of a coset, we saw the output of coset ¢ is an N-
decimation of the input signal if ¢;[n] = 1 for a single n and otherwise zero. This
is exactly what we want, since this matches the methods described in Chapter 7.
Therefore, assume that ¢;[n] = 1 for n = n; and otherwise zero. Now consider
Equation (B.6). Note that ¢; ;jm] = 1 if and only if ¢}[k] = 1 and ¢;[k + m]| = 1,
which requires that k = n; and k + m = n,. Equivalently, ¢; ;[m] = 1 if and only
if m = nj — n;. This means that ¢; j[m] consists of a single one. Now consider
Equation (B.9). Since ¢; j[m] consists of a single one, two columns of R; ; are
linearly independent if they are nonzero. Therefore, if all columns of R are nonzero,
then all columns are linearly independent and R has full column rank.

Suppose that the first N columns of R are nonzero. Consider Equation (B.9) in
conjunction with Figure B.5. We see that the structure of R repeats itself in a
diagonal way every N samples. Therefore, if the first N columns are nonzero, all
columns are nonzero and thus R has full column rank. The problem now reduces
to choosing ¢;[n] such that the first N columns of R are nonzero.

Consider ¢;[n] and ¢;[n]. This means that ¢; j[m] and ¢; ;[m] exist. We have seen
thatc; jim] = lifand onlyifm = n;—n; and ¢; ;[m] = 1ifand onlyif m = n;—n;.
We make the following observations.

1. If n; — n; > 0, then Figure B.5 shows that the n; — n; + 1'th column is
nonzero. Similarly, if n; —n; > 0, then the n; —n; +1'th column is nonzero.
Either way, the |n; — n;| + 1’th column is nonzero.

2. If n; — n; <0, then Figure B.5 shows that the N — (n; —n;) + I'th column
is nonzero. Similarly, if n; — n; < 0, then the N — (n; —n;) + 1’th column
is nonzero. Either way, the N — |n; — n;| + 1’th column is nonzero.

We require that columns 1 to NV are nonzero. This implies the following statement.
If |n; — n;| and N — |n; — n,| for all combinations of ¢ and j make up 0 to N — 1,
then all columns of R are nonzero and R has full column rank. This restriction will
be further discussed in 9.






C Construction of the matrices

'The operation of toeplitz and trilis illustrated with two examples.

1 2 3 4
. 2 1 2 3
toephtz([1234])—3212,

4 3 2 1

1 2 3 4 1000
il 223 _f2100
s 2 1 217103 21 0
4 3 2 1 4 3 2 1

To illustrate the way R, ; can be generated efficiently, we consider an example.
Suppose that N = 2 and L = 1. Then

Ci,j [0] CZ‘J‘[l] 0 0 0
Rij=| 0 cij[-1] cjl0] e[l 0
0 0 0 Ci,j [—1} Ci,j [O]

Now notice that

tril {toeplitz([ci,j[l] ci;l0] ei;[=1] 0 0 0]

Ci,j[]-] 0 0 0 0 0
Ci,j [O] Cij [1] 0 0 0 0
cijl=1  cizl0]  eigll] 0 0 0
0 cigl=1] cyl0]  eylt] 0 0
0 0 Ci,j[fl] Ci,j [0} Clj[l] 0

0 0 0 Ci,j [—1} Ci,j [O] Ci,j [1]

We can construct R; ; by omitting several rows and columns. First omit the first
N — 1 rows and last N — 1 columns. Then

ci ;1] 0 0 0 0 0
Ci,j [0} Ci,j [1] 0 0 0 0
Ci,j [—1] Ci,j [0] Cij [1] 0 0 0
0 Ci,j [— 1} Ci,j [0] C@j[l} 0 0
0 0 Ci,j [71] Cij [0} Ci,j [1] 0

0 0 0 Ci,j[ 1] Ci,j [0] Ci,j [1}
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remains. The red elements represent the omitted elements. Now keep rows 1, N +
1,...,2LN + 1. Then

Ci,j [0} Ciﬂ' [1] 0 0 0
i1 ciil0]  eis[l] 0 0
0 cijl=1 ey[0] el 0

0 0 Ci’j[*l] C; J[O} (,Zj[l]

0 0 0 ¢ij[—1] ¢ ;[0

remains, which is exactly R, ;.



D Circular sparse ruler problem

The circular sparse ruler problem was introduced in Chapter 8 and reformulated
in Chapter 9. Consider a circle with N marks on it. Every mark is occupied by a
sampler. Time on this circle passes as the hand of a clock. By continuity of the
circle, the lag d is estimated if the two marks are d apart. The circle is illustrated in
Figure D.1. Here N = 7 and the positions 1, 2 and 3 are marked. The circle is a
solution to the circular sparse ruler problem, since the distances between the marks
makeup 0,...,N — 1.

Finding solutions to the circular sparse ruler problem where the amount of marks is
minimised is relevant to us, since a minimal amount of marks is equivalent to using
a minimal amount of samplers for a given N. We call these solutions minimal
circular sparse ruler solutions.

[2] proposes a method that uses the so called linear sparse ruler problem to generate
solution for the circular sparse ruler problem. The linear sparse ruler problem is
similar to the circular sparse ruler problem. If one disconnects the end of the circle
in Figure D.1, but still requires that the marks make up the distances 0, ..., N —1,
one obtains the linear sparse ruler problem. This is illustrated in Figure D.2.

Figure D.1: Circular sparse ruler problem for N =7

XV
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T T T T T
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1 2 3
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4 5 6 7

Figure D.2: Linear sparse ruler for N = 7and M =4

'The proposed method in [2] uses the fact that a linear sparse solution for a certain
N can be turned into circular sparse ruler solutions for 2N — 2 when N is even and
2N —1when N is odd. To see this, simply note that every distance d between marks
on a circle also yields a distance N — d. The linear sparse solution in Figure D.2
is therefore also a circular sparse ruler solution for N = 13. This is illustrated in

Figure D.3.
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Figure D.3: Circular sparse solution for N = 13 generated from the linear sparse
ruler solution for N = 7. 'The numbers on the axis repeat since this is a circular
sparse ruler problem.

The generation approach is advantageous, since solutions of linear sparse ruler prob-
lem can be turned into circular sparse ruler solutions. Therefore better linear sparse
ruler solutions will also result in better circular sparse ruler solutions. Because linear
sparse ruler is a well-known problem, good solutions are already calculated. How-
ever, solutions generated for the circular sparse ruler problem are not necessarily
minimal. Finding minimal solutions is by no means trivial and requires clever al-
gorithms. It is also interesting to look at the structure of the problem to decrease
the solution space.

D.1 Structure of the circular sparse ruler problem

Optimal circular sparse rulers form interesting solutions to the circular sparse ruler
problem. They are circular sparse ruler solutions to configurations with M samplers
such that N is as high as possible. Optimal solutions ensure the highest perfor-
mance possible for a given amount of samplers. In similar fashion, one can define
optimal solutions to the linear sparse ruler problem.
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M N  Marks at positions

2 3 1,2

3 7 1,24

4 13 1,2,5,7

5 21 1,2,7,9,19

6 31 1,2,5,7,14,22

739 1,2,5,7,14,21,31

8 51 1,2,810,13,32,36,46
9 65 1,2,5,7,15,33,43,51,54

Table D.1: Several solutions to the circular sparse ruler problem

(Upper bound on circular sparse ruler solutions.) Consider a configuration with A
samplers. Then N < M(M —1) + 1.

There are M? combinations of samplers. However, M of them result in a com-
bination with themselves, which yields an estimation of lag 0. Therefore, only
M? — M+ 1= M(M — 1) + 1 different lags can be estimated. The estimated
lags must make up 0,...,N — 1, which are N different lags. Therefore N <
M(M—1)+1. 0

D.2 Results

We have used integer linear programming to calculate circular sparse ruler solu-
tions. This program is explained and derived in Appendix E. The solutions are

shown in Table D.1.

Figure D.4 compares the upper bound from Theorem 1 to minimal linear sparse
ruler solutions and minimal circular sparse ruler solutions. One can clearly see that
tor high M, minimal solutions to the circular sparse ruler problem have higher N.

D.3 Collaborative sampling

Collaborative sampling also requires that the circular sparse ruler problem is satis-
fied. In this case, however, the estimation of the lags is split across two physically
separate devices. This is shown in Figure D.5. The red arrows indicate the lags that
are produced by device one, and the blue arrows indicate the lags that are produced
by device two. Note that together they make all lags available. [7] investigates ways
to come up with optimal set-ups for different amounts of devices.

THEOREM I

PROOF OF
THEOREM I
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Figure D.4: Solutions of the circular and linear sparse ruler problem. Minimal

solutions to linear sparse ruler are shown in red, minimal solutions to the circular

sparse ruler problem are shown in blue and the upper bound from Theorem 1 is

shown in green.
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Figure D.5: Collaborative sampling with N = 13 and M =4



Figure D.6: Coprime sampling witha =3 andb =5

D.4 Coprime sampling

D.4. Coprime Sampling XIX
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
ry e e e e e
T R (NN N NI N N S N S NN N N N N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Similarly, coprime sampling also requires that the circular sparse ruler problem is

satisfied. A configuration for coprime sampling is depicted in Figure D.6.

We see that the sampling periods a and b should be chosen carefully such that all
lags are estimated. [8] shows that choosing a and b coprime yields that all lags are
estimated. Remember that a and b are coprime if the only positive integer that

evenly divides both of them is one, hence the name coprime.






E Generating solutions to the cir-
cular sparse ruler problem

WEe reintroduce the concept of a ruler. Consider a ruler r of length N. Thenr €
{0,1}N. Also, (r); = 1 if the element at position i is marked, and (r); = 0 if
the elements at position is not marked. If an element at position ¢ is marked, then
a coset samples the 7’th sample of every group of N samples of the input signal.
We will formulate the minimal circular ruler problem as an binary integer linear
program.

A ruler r contains a distance d if there exist ¢ and j such that (r); = 1, (r); = 1 and
|i —j| = dor N — |i — j| = d. The ruler r is a circular ruler if it contains distances
1,...,N — 1. A circular ruler r is minimal if and only if ||r||; is minimal.

Let Dy be the set consisting of the vectors d € {0,1}" such that (d); = 1 and
(d);rqg =1wherei=1,...,N —dor(d); =1and (d);+q_n where i = N —d +
1,...,N—1.

Let r € {0,1}" be a ruler. Then r contains the distance d if d’r = 2 for any
de Dy.

Assume that d”'r = 2. Then there exist i and j such that (d);(r); + (d);(r); = 2.
'This implies that (r); = 1 and (r); = 1. Since d € Dy, either |i — j| = d or
|i — j| = N — d. In both cases, r contains the distance d. O

Let D, denote the |Dg4| x N matrix which contains all vectors in Dy as rows.

Letr € {0,1}" be a ruler and let y € {0,1}/74l, Then r contains the distance d
at least once if Dgr > 2y such that ||y||; = 1.

Assume that Dyr > 2y such that ||y||; = 1. Then there is one and only one ¢ such
that (y); = 1. Therefore there exists a d € Dy such that d”r > 2(y); = 2. Since
[|d]|x = 2, the equality holds and thus r contains the distance d. Now consider

XXI

THEOREM 2

PROOF OF
THEOREM 2

THEOREM 3

PROOF OF
THEOREM 3
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d’ € D, such that d’ # d. Then d’r > 0, which holds for anyr. O

Consider the binary integer linear program
minimise 15
D, AT 1|7151| Y1
such that : r>21: |, : =1n_1,
Dy Y2 1\7be1| YN-1
re{0,1}¥ andy, € {0,1}/Pil fori=1,...,N —1.

'Then, by the definition of a minimal circular ruler and Theorem 3, this program
yields a minimal circular ruler of length N.



F Appendix on detection

'This appendix will focus on the detailed theory behind the detectors as described
in Chapter 10. First a set of definitions is given which will be used in subsequent
explanations and derivations.

F.1 Preliminaries

'The definitions given in this section are used in the derivations later on and are

based on [51], [52].

(Complex Gaussian Random Variable.) Given the complex Gaussian random
variable Z = X + jY, then Z is said to be complex Gaussian distributed if X and
Y are jointly-Gaussian distributed. We denote Z ~ CA (p, T, C).

A complex Gaussian random variable is characterised by three parameters:
1 j=B(2),
2. T'=E[(Z - u)(Z* — pu*)T] and
3. C = Bl(Z - w)(Z - w)").

(Circular Symmetric Complex Gaussian Random Variable.) Given a complex Gaus-
sian random variable Z = X + jY, then Z is circular symmetric complex Gaussian
distributed if Z has the same distribution as Ze’? with 6 real. A circular complex
Gaussian random variable Z is referred to as Z ~ CN(0, 02).

Since
E(Z)=E(&%2) = °E(Z)

it follows that Z has an expectation value of zero. To see why letE(Z) = a+bj and
notice that e/ # 0. Then if e’ E(Z) = E(z) holds, then so does (a+bj) = e/ (a+

XXIII

DEFINITION I

DEFINITION 2
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bj). Now it follows that E(Z) cannot be anything else than zero. Furthermore,
since

E(ZZ)=E(e°Ze02) = 29 E(Z?)

it follows that Var (X) = Var (Y) (by an analog argument as for the expectation
value). That is, X and Y are independent Gaussian distributed with zero mean and
equal variance. It now follows that 02 = E(ZZ) = Var (X) + Var (Y).

DEFINITION 3 (Circular Symmetric Complex Gaussian Random Vector.) ~ Given the random vector
Z € CV, then Z = X+, isa circular symmetric complex random vector if X and
Y are jointly Gaussian distributed and Z has the same distribution as e/Z with 6
real.

Similar to a circular symmetric complex Gaussian variable, E(Z) = 0 and E(ZZ") =
0[52]. A circular symmetric complex Gaussian random vector Z is referred to as
Z ~ CN(0,I',0) with T' = E(ZZ"). For the standard circular symmetric com-
plex Gaussian random vector, I' = I. The probability density function of a circular
symmetric complex Gaussian vector Z € C¥ is given by

m exp (—(ZT)*I‘_lz) .

DEFINITION 4  (Chi-square distribution for complex random variables.) Given a random vector
Z € CV, with Z; ~ CN(0, 21, 0) then the random variable X defined as

X =3 [(Z)a]’

follows a chi-square distribution with 2N degrees of freedom, denoted by X ~
X3n- E[X] = 2N and Var[X] = 4N.

DEFINITION 5 (Likelihood function under Hypothesis.) ~ Given a hypothesis 7 and a realisation x
of a random variable X, then Lx 3 (x) denotes the likelihood function of x given

H.

DEFINITION 6  (Neyman-Pearson Test.) Given a continuous random vector X, and two hypothe-
ses Ho and H1, the Neyman-Pearson test rejects that the realization x of X, has
been produced under # in favor of H1 when

_ LX\HO (X)

A= T )

<.



FE1. Preliminaries XXV

where 7, the decision threshold, is chosen such that P[A(x < v)|H1] is maximized
subject to P[(JA(x) < v)|Ho] = Pfa, Where Py, denotes the false alarm probability.
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(Covariance Matrix.) Given a vector X, its covariance matrix is defined as C, =
E(xx) - B(x)B(xH)

F.2 Energy detector

Conventional Energy detector

This section will give a derivation of the conventional energy detector based on [26].
Let z[n] denote the received signal. The conventional energy detection algorithm
must decide between to hypotheses:

Ho : z[n] = w[n], (F.1)
Hy ¢ z[n] = s[n] + wln], (F2)

in which w[n] denotes additive circular symmetric complex Gaussian noise and s[n]
denotes a signal as transmitted by a primary user.

We assume that the noise samples are independently identically zero mean circular
symmetric complex Gaussian distributed, that is w[n] ~ CN'(0,02). We further-
more assume that the samples of the signal s[n]| can be modelled independently as
circular symmetric complex Gaussian CA(0,02). So

ol CN(0,02) if Ho,
CNI0, (02 +02)] ifH;.

Let
x=[al0] al1] .. ofN-1)"

denote a vector containing N samples of the signal z[n]. Then the likelihood func-
tion of x denoted as L(x) is given by

N
L(X) = H f(x)i
=1

1/02mN . exp(—%'0;, %Ix) if Ho,
1/(02 +02)aN - exp[-X' (02 + 02)"1Ix] if H;

where f(x), denotes the probability density function of element i in x. The test
statistic A(x) as used in the Neyman Pearson test is then given by:

1/o27N - exp(—%'0;, 2Ix)
/(o7 + 03)m™ - exp[=X/ (07 + 02)'Ix]’

Alx) =
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By taking the logarithm of A (z) we obtain a log-likelihood Ratio test statistic A’ (z),
given by

(F3)

A(x) =1
. Og{]/&%r+U@WN-emﬂ—i%0%+%€)‘qX]

1/o27N . exp(—%'0,, %Ix) }

N-1
1 1
| 2 1 2 2\ _ - - . 2.
ou(e) +10s(o? +02) = o3 = iz ) 3 el
Observing that the constants o, and o5 do not depend on value of the samples, the
test statistic!

N-1

Nx) = = 3 el

n=0

is proportional to A’ (x). If we negate A” we get same test statistic as denoted by A
in Section 10.3. Do note that this negation is effectively a division in the original
Neyman-Pearson test and therefore if —A” > +, the detector decides that #; is
the true hypothesis.

Threshold

In this section we will determine the threshold v for the energy detector test statistic
—A"(x). Under H we have that A”(x) is the sum of 2N independent zero mean
Gaussian distributed variables with variance 02 /2. To see why, remember that x
is circular symmetric complex Gaussian and therefore for the element z; € x the
following applies |z;|> = z; - 2} = a® + b*> where a = Re(x;) and b = 3(z;). So

—2A"(x
OTQL() ~ XgN' (F4)

'Therefore, the false alarm probability py, is given by [53]

Pra = P(=A"(x) > 7)
=1~ Fan(2v/07)

with Fyy the cumulative distribution function of a chi square distribution with 2V
degrees of freedom.

If N is large enough, we can approximate the test statistics’ distribution by a Gaus-
sian distribution as it it is the sum of 2N independent identically distributed ran-
dom variables. By the central limit theorem,

1 1 1
observe that = > P
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" 2 _
Fon 10 <2A (z)/0? zzv).

2V N

Py, can then be approximated as

o2 —
Pro~Q <W> . (E5)

Given a desired Py,, the threshold 7 is given by

7 =[Q7" (pra) VN + Nlo?. (F.6)

F.3 Energy detector using the reconstructed autocorrelation

In this section we will derive how ~y;, as introduced in Section 10.3 can be calculated.
'This derivation is largely based on [2] and is heavily dependent on the derivation
in Appendix B.

We assume that if our signal z[n] purely contains noise, then z[n] ~ CA(0,02).

Let
£, = [f([<LN] --- #0] --- #[LN]]"

denote the vector containing the estimated elements of the autocorrelation. By
Equation (B.12) we know that the estimator ¥, of r,, is given as

£, = R'#,.
where the elements of the estimator ¥, of r,, are given by Equation (8.1).

Let F denote the (2LN + 1) x (2LN + 1) discrete Fourier transform matrix, then
§;, defined as 8, = Ff, is an estimator of the power spectral density P(w) at
frequencies w = 27k /(2LN + 1) where 0 < k < 2LN .

In [2] it is derived that when K'LN is large, then the elements of s, are approx-
imately Gaussian distributed. Let §; denote the k’th element of §,, then we ap-
proximate its distribution by the Gaussian N (p, 0%).

'The threshold ~, is then given by

i = Q' (pa)ok + pik- (E.7)

Note that uy is equal to the £’th element of the vector

E(38,) = FR'E(r,).
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Making use of the following relation as derived in [2], giving the elements of E(r,)

E(ry, ., [k]) = E[(cij * o) (EN)] Equation (B.5)
= ¢;,;0[K]
we can calculate py for 1 < k < 2LN + 1.

To calculate o, we note that the k’'th element on the diagonal of the covariance
matrix of §, contains the variance o7. Let C;, denote the covariance matrix of §,.
We can compute C;, by

Cs, = E(8,8;)) — E(3)E(8") (F8)
— E[(FR't,)(FR't,)"] — E(FR't,)E[(FR't,)"]
=FR'E(r,r!)\RWF? - FR'E(r,) E(c! R FH
=FR'C, R/F".

Let C;, denote the covariance matrix of of #,, with its elements given by

Cov(?y, y. [1], Py, . [7])- (F.9)

As stated in [2], under the assumption that the elements of z[n] are independent
identically circular complex Gaussian distributed, the expression for the covariance

in Equation (F.9) simplifies to

oker 0]k L1016 [ — i
Couy iy ) = 20T 20 (Ra0)

Now that we have described how to calculate y, and o, Equation (F.7) can be
evaluated.

F.4 Covariance Absolute Value detection

Explanation
Let L samples of the signal 2[n| be collected in the vector
x=[z[n] zn—-1] - x[n—L—f—l]]T.

Furthermore let

C = Bl(x - ) (x — )"
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denote the covariance of x with y = E(x). In the case that E (x) = 0, like for
noise or most communication signals, then C can be simplified to

C, = BE(xx")
_ E (z[n — 1]z*[n]) E (z[n — 1]z*[n — 1]) E (z[n —1]z*[n — L +1])
E(:c[n—L—l—l]x*[n]) E(a;[n—L—fil]x*[n—l]) E(x[n—L—&-ljx*[n—L—i—l])

Under the assumption that z[n] is a wide-sense stationary signal, we can simplify
C even further.

C, = BE(xx')
7 (0] 72 [1] ro[L — 1]
_ (1] 7r2[0] re[L — 2]
rlL—1 mlL—2 ... 7]

Note how C, is symmetric and has a Toeplitz structure. This corresponds to the
first block in Figure 10.4. As the autocorrelation function of white noise is a delta
function, it means that if x[n] is white noise with variance 2, then C, = o21. If
the signal z[n] is not equal to noise, then its autocorrelation function is not equal
to a delta function which results in C,, having nonzero off diagonal elements.

Covariance Absolute Value method detection uses a measure of this ‘diagonality’
of C,, as test statistic A. This measure A is defined as

— Tl
s
L L
_ anl Lz’rn:1 |(Cz)nm| (Fll)
Zk:l |(Cr)kk|

A

where Ty = S5 S2F  [(Co)pml/L and To = S5, [(Co)rrl/L. This test
statistic can be computed by first taking the absolute value of C,. This is then
followed by summing all the elements of the resulting matrix, 77, and computing
the trace of that matrix, T5. Upon diving those two results one obtains the test
statistic A. This process is depicted in Figure 10.4.

In practice one estimates the matrix C, by using a limited amount of samples N to
estimate 7,[n]. The threshold given a desired false alarm probability py, is derived
in [14] to be

_ 1+ (L—1)y/2/Nx
IS ) VN

This threshold, however, does not apply to the estimated autocorrelation of our
reconstruction method. [14] assumes that N samples are used to estimate each
element of the autocorrelation in C,, as:
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N-1
re[m] = % Zx[n]x*[n—m] m=0,1,...,L—1. (F12)

Our reconstruction, first of all does not use Equation (F.12) to estimate the auto-
correlation. Second, as [14] uses the variance of r,[m] when estimated by Equa-
tion (F.12), in its threshold derivation we know that this threshold is not applicable
to our reconstructed estimate, as the variance of the estimated r,[m] is not neces-
sarily constant (to see why consider Equation (F.8) without multiplication by F)
and the same as in Equation (F.12).






G Jammer

Introduction

For our business plan we considered building a smart jammer. When the signals
that are present in the spectrum are identified a list of frequencies that need to be
jammed can be generated. To do the actual jamming we decided to build a simple
device to block one programmable frequency. The number of transmitters should
scale with the number of expected signals in the frequency range that needs to be
jammed.

In this section we will discuss the working of this jammer. We will begin with a
block diagram of the transmitter, and we will then present the complete schematics
and the PCB. Unfortunately, because this was a small side project, we did not have
enough time to actually finish the design and build it. We designed a schematic
and pcb footprints, simulated the essential parts. The we did not have enough time
to design a noise source and do the routing and simulation of the PCB.

Block diagram
405-675 MHz 405-675 MHz
5 MHz
Noise

Figure G.1: Block diagram of the jammer

'The block diagram of the jammer can be found in Figure G.1. The jammer works by
generation a square wave with a programmable clock generator IC. These ICs are
much cheaper than a solution with a very broadband voltage controlled oscillator
and a PLL. We chose a specific IC with a frequency range of 3 MHz to 416 MHz. In

XXXIII
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this example we want to jam the band including the 446 MHz frequency of license
free radios. Our oscillator only operates up to a frequency of 416 MHz, therefore
we need to select a high harmonic, in this case the third, and filter all of the other
components of the square wave. In this case we use a bandpass filter that spans
the 405 MHz to 675 MHz. The bandwidth is determined by the frequency of the
fifth harmonic. At 405 MHz the base frequency is 135 MHz, and the fifth harmonic
675 MHz. We created a small script to generate a complete table of needed filters to
span the whole range of 3 MHz to 3 GHz. These results can be found in Table G.1.

After the filtering the signal is mixed with a band-limited noise source, and then
amplified and filtered again. This should produce a band limited signal with noise
at the desired frequency.

Table G.1: Filter frequencies for frequency range of 3 MHz to 3179 MHz

Harmonic  Filter low [MHz]  Filer high [MHz] LO low [MHz] LO high [MHz]

1 3 9 3 9
1 9 27 9 27
1 27 81 27 81
1 81 243 81 243
3 243 405 81 135
3 405 675 135 225
3 675 1125 225 375
5 1125 1575 225 315
7 1575 2025 225 289
7 2025 2601 289 371
9 2601 3179 289 353
Schematics

The complete schematics can be found in Appendix H. Only the noise source is
not implemented yet.

Filter design

For this implementation we chose a frequency range of 405 MHz to 675 MHz. We
designed!® a sixth order Chebyshev bandpass filter, with a ripple of 1.0dB in the
passband, a characteristic impedance of 50 Q2. We also designed a matching net-
work to match the 50 of the filter to the 1802 input impedance of the mixer.
The schematics of the filter can be found in Figure G.2.

Microcontroller

A microcontroller was needed to control the clock generator IC and communicate
with the PC. We decided to use an Atmega 328P. This is the same microcontroller
used as on the very widespread Arduino boards. Therefore a lot of code is already

1Designed with http://www-users.cs.york.ac.uk/~fisher/lcfilter/
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60nH

Figure G.2: The designed bandpass filter

available. This would allow us to develop the firmware in the limited time we had

left.

'The microcontroller connects to the PC with a special USB to Serial cable produced
by FTDI. With this setup we can easily send commands from our python program
to the microcontroller.

Simulations

To verify the working of the system we built a SPICE simulation of a simplified
version of the schematic, see Figure G.3. The resistor of 1 M2 was added to prevent
a SPICE error about inductor loops. This includes the filter in Figure G.2 and a
matching network to match to 50 € source to the 180 2 impedance of the mixer.

Filters

50 Q2 60nH

@ 12pF — g 7.4nH 1 MQ |:i| —____1pF 180 Q

Figure G.3: Schematic of the filter and matching network used in the simulation
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Figure G.4: Bode plot of the designed filter and matching network

If we look at the bode plot in Figure G.4 we can see the passband is in the frequency
range we expected. The phase lag in the upper part of the filter is large, but expected
for a sharp filter.

Complete System

We also did a simulation of the complete system, to check if our assumptions about
the suppression of the unwanted harmonics worked correctly. We replaced the
clock generator IC by a square wave source and the noise source by a theoretical
noise source. The mixer was replaced by a theoretical multiplier. The resulting
schematic can be found in Figure G.5.

The results of the simulation can be found in Figure G.6. We can see that the
system works as we expected. The wanted third harmonic of the original signal
is more than 20 dB stronger than the other signals. This is good enough for our
purposes.
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Figure G.5: The schematic used for the system simulation
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Figure G.6: Spectrum plot of the system simulation
PCB

During the schematic design we drew all the footprint and 3d-models of the part.
Therefore the routing of the low frequency signals on the PCB should not be much
work. The difficulty arises when routing high frequency wires where the physical
properties of the PCB become a factor. Fortunately we used Altium to design our
schematic and PCB we can make use of the signal integrity analysis. With this
special tool we can calculate the influence of trace length on the signal integrity.

In Figure G.7 a first impression of the PCB can be seen. This is only mock-up, no
actual routing or placement is done.
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Figure G.7: 3D view of the designed PCB
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XXXIX



1 2 3 4
U_power
power.SchDoc
12v 12v
Sv Sv
3v3 3v3
GND GND
3v3 3v3
3v3 U_mixer
U_arduino U_oscillator 3v3 mixer.SchDoc U_if amplifier J1
arduino.SchDoc oscillator.SchDoc U_bandpass_405_675 5 if_amplifier.SchDoc U_bandpass_405_676 CONSMA002
33 bandpass 405 675.SchDoc v bandpass 405 675.SchDoc
SDA { > SDA OSC+ [ { > LO+ ouT { > RFIN —O
SCL > SCL 0OsC- { > LO-
cs { > Cs GND [ T
ED GNb GNb
GND U_noise Sv
noise.SchDo —-|—
GND sv [ b
ouT > IN GND
GND [}
GND
GND
Title
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\main.SchDoc | Drawn By:

4




2 3 4
L1 C1 L2 C2
Y Il Y 1|
IN+ 11 I OUT+ >
60nH 60nH
1.5pF 1.5pF
L3
)7.4nH
12pF
IN- OouT-__ >

Title
Bandpass 405Mhz - 675Mhz, Zin = 50 Ohm
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\bandpass 405 675.SchDb®rawn By:
4




U_serial
serial.SchDoc

|»
G

Ul

3v3 3v3 3v3

Cc4 C5 C6
100nF 100nF 100nF

GND GND

ESEN

vce

vcc

20

AVCC

GND

RST
FTDI TXD
FTDI RXD

ey

100nF

u

AREF

GND

21

GND

33

GND

DAP

ADC6
ADC7

PCO (ADCO/PCINTS)

PC1 (ADC1/PCINT9)

PC2 (ADC2/PCINT10)

PC3 (ADC3/PCINTI11)

PC4 (ADC4/SDA/PCINT12)
PC5 (ADCS5/SCL/PCINT13)
PC6 (RESET/PCINT14)

PDO (RXD/PCINTI16)

PDI1 (TXD/PCINT17)

PD2 (INTO/PCINT18)

PD3 (PCINT19/0OC2B/INT1)
PD4 (PCINT20/XCK/T0)
PD5 (PCINT21/0COB/T1)
PD6 (PCINT22/0OCOA/AINO)
PD7 (PCINT23/AIN1)

S

PBO (PCINT0/CLKO/ICP1)
PB1 (PCINT1/OCIA)
PB2 (PCINT2/SS/OCIB) (¥

DEBUG LED

R1
270R

LEDI1
Q\Rcd

GND

FTDI TXD

FTDI RXD

RST

SDA

GND

U_icsp
icsp.SchDoc

K] vee
] RST

PB3 (PCINT3/0OC2A/MOSI)

MOST

Sfofal=m

PB4 (PCINT4/MISO)
PBS5 (SCK/PCINTS)

DEBUG LED

> MISO

PB6 (PCINT6/XTAL1/TOSCI)
PB7 (PCINT7/XTAL2/TOSC2)

ATmega328P-MU

Crystal 16MHz

SCK
{1 GND

Title
Arduino

Size Number

A4

Revision

Date: 4-6-2015

[ Sheet of

File: Z:\Dropbox\..\arduino.SchDoc

| Drawn By:




1 ‘ 2 4
12v Sv 3v3
1oy 12v 12v
Sv
LED2 LED3 LED4
2v3 \:\Grccn \:«Grccn \:«Grccn
Terminal 5.08mm GND
GND
R3 R4 RS
GND 2k2 560 220R
MCP1703A-3302E/DB
12v 18] 3v3 GND GND GND

GND

12v

GND GND

MCP1703A-5002E/DB

Title
Power management
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\power.SchDoc | Drawn By:
1 2 4




2 4
3v3
3v3 3v3
c10 Cl1
_-|__100nF _-|__100nF
GND GND
GND
3v3 3v3
@
U2
1411 EN g 2 DSC2130
FS a
=B
ouT I
5 OUTT
;5 SDA o
7 Lz
Ccs &}
<+
GND

Title
Programmable Oscillator
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\oscillator.SchDoc | Drawn By:
2 4




Sv
Sv Sv
= I I
Cl6 c17
oD 100nF InF
GND GND
GND
Sv
5v  Sv
L4
o o U 120H
MGA-565P8
N @
a8 8
cis = B c1o
[RFIN ” 2 RFIN RFOUT L 5 ” RFOUT>
100pF ARAAAA 100pF
Zzzz2
FEEEE]

1
3
4
8
0

Title
IF Amplifier
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\if amplifier.SchDoc | Drawn By:

1 2 3 4




1 2 3 4
5v Sv
ICZO ICZI
GND InF 1uF
GND GND GND
Sv Sv Sv
~
U6
Matching network 2 EN o LT5560
Rin =50 Ohm Ls Cc22 Rin =180 Ohm g L6 T C23
[ Lo+ LYY YL Il Il OUT
44nH I L8 0+ ouTs 6 T 68nn S B 11
C24  1.2pF Ll o OUT. 2 1.5pF
1pF - U
L7
[ Lo- 3 a
1IN+ % 68nH MABAES0061
—ECZS IN- &
InF o Balanced to unbalanced
GND
GND
C26
InF GND
[N H
R6
1K
GND
Title
Mixer
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\mixer.SchDoc | Drawn By:
1 2 3 4




Header 6 pin RA Male
13

AU AW —

GND

TXD
RXD

lC27

100nF

Title
Connection for FTDI Cable
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\serial.SchDoc | Drawn By:

4




o o
o o
o o

MTSW-103-07-F-D-244

Title
In circuit programming cable connector
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\icsp.SchDoc | Drawn By:

4




4
Sy
Ay Not Yet Implemented @
GND
GND GND
Title
Noise source, band limited to l0MHz
Size Number Revision
A4
Date: 4-6-2015 [ Sheet of
File: Z:\Dropbox\..\noise.SchDoc | Drawn By:
1 2

4




	Contents
	Preface
	Introduction
	Project description
	Problem statement
	Proposed solution
	Source code and documentation

	Similar research
	Theory
	Introduction
	System specification
	General description
	System specification
	System overview

	Non-uniform sampling
	Introduction
	Uniform sampling
	Non-uniform sampling
	Multi-coset sampling

	Reconstruction
	Introduction
	Overview
	Reconstruction of the power spectral density
	Implementational details
	Conclusion

	Sampling methods
	Introduction
	Concept
	Sampling and reconstruction
	Conclusion

	Detection
	Introduction
	Overview
	Energy detection
	Covariance absolute value method
	Conclusion

	System evaluation
	Introduction
	Overview
	Testing
	Results

	Discussion
	Introduction
	Sampling
	Reconstruction
	Detection


	Implementation
	Introduction
	Specifications

	Preliminaries
	Libraries
	Workflow

	System Overview
	Model-View-Presenter

	Model - The Core
	Source
	Sampling
	Reconstruction
	Detection

	Presenter - The Supervisor
	Primary control
	Settings server
	WebSockets

	View - Visualisation & Control
	Back-end
	Elements
	Front-end

	Hardware
	USRP N210

	Software quality & Testing
	Introduction
	Testing
	Documentation
	Qualities of good code

	Performance
	Profiling
	Algorithms and Data structures
	Multiprocessing
	Results and Further Improvements

	Future Work
	Hardware Implementations
	Product Implementations

	Discussion
	Software
	Hardware


	Final Thoughts
	Conclusion

	Bibliography
	Appendix
	Ethical paragraph
	Derivation of the reconstruction algorithm
	Construction of the output of a coset
	Autocorrelation and cross-correlation
	Relating the autocorrelation of the input signal
	Estimating the autocorrelation of the input signal
	Unicity of the estimation

	Construction of the matrices
	Circular sparse ruler problem
	Structure of the circular sparse ruler problem
	Results
	Collaborative sampling
	Coprime sampling

	Generating solutions to the circular sparse ruler problem
	Appendix on detection
	Preliminaries
	Energy detector
	Energy detector using the reconstructed autocorrelation
	Covariance Absolute Value detection

	Jammer
	Schematics of the jammer


