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Introduction and Motivation



I An (in)famous example: Power poses

A well cited paper by Carney, Cuddy & Yap (2010).

High Power Low Power

Fig. |. The two high-power poses used in the study. Participants in the high-power-pose condition  Fig- 2. The two low-power poses used in the study. Participants in the low-power-pose condition were
were posed in expansive positions with open limbs. posed in contractive positions with closed limbs.



An (in)famous example: Power poses (2)

Dana Carney'’s (first author) retraction of her name:

There are a number of methodological comments regarding Carney, Cuddy & Yap (2010) paper that | would like to
articulate here.

Here are some facts

1.

There is a dataset posted on dataverse that was posted by Nathan Fosse. It is posted as a replication but it is, in
fact, merely a “re-analysis.” | disagree with one outlier he has specified on the data posted on dataverse (subject
# 47 should also be included—or none since they are mostly 2.5 SDs from the mean. However the cortisol effect
is significant whether cortisol outliers are included or not). | have posted data on my website that replicates all
effects in a re-analysis except the cortisol one (although it is still significant).

The data are real.

The sample size is tiny.

The data are flimsy. The effects are small and barely there in many cases.

e wN

Initially, the primary DV of interest was risk-taking. We ran subjects in chunks and checked the effect along the
way. It was something like 25 subjects run, then 10, then 7, then 5. Back then this did not seem like p-hacking. It
seemed like saving money (assuming your effect size was big enough and p-value was the only issue).

Some subjects were excluded on bases such as “didn’t follow directions.” The total number of exclusions was 5.
The final sample size was N = 42.



Peak at your peril

Why does Carney speak about p-hacking? Let's review.

Confidence sets: Must satisfy P(§ € CIY) > 1 — a. For example, 6,, == LS X~
N(0 ,7) for n.>> 0 by CLT, so the classical z-interval CI% = [f,, z%% én + 2z "—ZL]

Duality between p-values and confidence sets:
@ a p-value for Hy: 6 = 6 based on (CIS), is Py, = sup{« € [0,1]: 6y € CIo}.
@ a confidence set based on (Py,)g, is ClIy = {0y € R: Py, > a}.

Issue: These are valid only for a fixed a priori selected n!



A concrete example

Setup: X; i.i.d. Rademacher, 6, = 1 S°7 | X;, 6 = E[f,,] = 0.
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Francis J. Anscombe

‘Sampling to reach a foregone conclusion.’

Fixed-sample-size analysis of sequential observations.
Biometrics, 10 (1954), 89-100.




Rest of the presentation

Goal: Introduce sequential analysis tools which are valid under arbitrary stopping rules,
and control for multiple hypothesis testing under arbitrary dependencies.

Applications: Statistical analysis in natural and social sciences, randomised trials in
medicine, causal inference, A/B testing, ...

\I/

E ]
3| BEND TOMY WILL || anD
BUWHAHAHA! 13| "AND cHOOSE THE |:|THIs1s
JIMUSING 16 ORANGE BUTTON, | LEG]AL?
= gl YOU MINDLESS |:
e o] - [Pl - I OuN
g g YOU Now!
5 5
£ g
g




Rest of the presentation (2)

|. Introduction and Motivation

[I. Time-Uniform Chernoff Bounds

IIl. Bets and confidence sequences

I\VV.  E-values and false discovery rate control

V. Wrap-Up



Time-Uniform Chernoff Bounds



EXAMPLE: Evaluation of a Classifier

e Consider data set of labelled i.i.d. observations:

(Zi, Vi) € 2 x {@, @}
some feature space

F:Z-{0,0}.

* We wish to test whether the classifier learned anything:

e Consider a trained classifier

?
P(F(Z*)=Y") > 1.
N/

new observation



EXAMPLE: Evaluation of a Classifier (2)

* We will collect new i.i.d. samples (Z7,Y7"),(Z5,Y5), ..., set

[+ iRz =Yy,
=1 i F(ZF) £ Y

7
and test Hy: E[X] = 0 against H;: E[X] > 0.

® Standard approach:

@ Collect n such samples.
@ Estimate the score on this new data: 15, := 15" X,
® Compute a one-sided a-confidence interval (—oo, Uy):

IP)O(%S,L € (—o0,Up)) >1—
® Reject Hy if 1S, ¢ (—00,Uy,).



EXAMPLE: Evaluation of a Classifier (3)

¢ Collecting samples can be expensive!

X Cannot prematurely stop the collection process.

X Cannot collect more samples if you failed to reject Hp.

® Mathematical statement of these observations:

Po(25; € (—00,U;)) # 1 —a for a stopping rule .

Can we modify the standard approach to allow any stopping rule?

® Yes! Need uniform guarantee (Lem 1, Ramdas et al., 2020):

Po(Vn: %Sn € (—o0,Up))>1— .



Uniform Confidence Sequences

Pointwise confidence interval:

]Po(Sn S CIn) >1—a

* A single CI,
X Valid for a singlen € N
v Tighter

S, —1—

Uniform confidence sequence:
Po(Vn:S,€Cl,) >1—a

* A sequence (CI,,),>1
v Valid for all n € N

X Looser (no free lunch!)

Sn

V
—



Constructing Cls and UCSs

Pointwise confidence interval:
Po(Sn > ) < g(b)
® Cramér—Chernoff method
® Markov's inequality:
P(X >b) < $E[X]
® Underlying martingale:

(Ln)nzl

Uniform confidence sequence:

Po(dn: Sp>an+b) < g(a,b)

® Cramér—Chernoff method

= Ville's inequality:

P(sup L, > b) < E[L4]
n>1

v

Enables uniform guarantee!



RECAP: Martingales

all information
up to time n

e Definition: (Ly)p>1 is a martingale if Ly, = capital at time n,
= fair betting game

E[Lpy1 | Fn] = Ly, +—-
e |ntuition: martingales are increasingly finer averages:
L, =E[Ly | Fy]-

V" Constant expectation: E[L,] = E[L;].

v Ville's inequality:
P(sup L, > b) < tE[L4]

n>1



RECAP: MGF, CFG, and Convex Conjugate

Moment-generating function (MGF):

px(A) =EM], s, (0) = px (A"

Cumulant-generating function (CGF):

PYx(A) :==logox(N), s, (A) =nhx(N).

* Convex conjugate of CGF:

Px (b) = sup (bA — ¥x (X)).

AER

Y% determines how 1S, fluctuates around E[X] (e.g., Cramér's Theorem).



Pointwise Concentration of S,

® Cramér—Chernoff method:

Po(Sn > b) = Py(e*n > ) (A>0)
< e N E[eMn] (Markov's inequality)
D exp[—n(EX —px (V)] (def. of ¥y)
Po(S, > b) < exp[—npk(2)]. (inf over A > 0)

¢ Equivalently, (i) uses that L,, is a martingale:

Ly = eAS"_nQZ]X(A), E[LnJrl |]:n] = Ly, E[Ln] =L

. .
= Use this to generalise to UCS! def. of martingale



Line Crossing Inequality for S,

® Choose A > 0 such that a > %:

Po(3In: S, >an+b) <Py(3In:S,> Mn—i—b)
— Py(Fn : O > Ay
Po(sup,,>q = (A) > e)‘b)

e NE[L] = e, (Ville's inequality)

IN

Po(3n : S, > an +b) < exp[—D(a)b], (inf over \)

where D(a) =sup{A >0:a > w} (inverse of \ — w()‘))
e This is an exponential line crossing inequality.

¢ Cannot be improved: equality for BM (D(a) = 2a).



Line Crossing Inequality for .S,, (2)

Pointwise confidence interval: Uniform confidence sequence:

Po(S, >b) < exp[—mp}(%)] Po(In: S, > an+b) < exp|—D(a)d]

ook e

n
Sn

® How these compare?

e Towards Cl and UCS: set RHS to o and solve for b.



Line Crossing Inequality for .S,, (3)

Pointwise confidence interval:

Po(Sn > ny 2 log(1)]) < @

(e

Sn

n

Uniform confidence sequence:

Po(3n : S, > V05 el/e)y <

asymptotic tightness __ 4
(increases with \) T

1 initial tightness
=S (decreases with \)

e Linearisation of pointwise bound gives uniform bound!

X Uniform bound fails to produce UCS for %Sn that goes to zero...



I Mixture Boundaries

typically S,, = O,(yv/n)
f

e We require a sublinear-boundary crossing inequality for S,,.

Heart of argument of line crossing inequality:

S, > @nJr log(;/a) — L,(\) = eASn—np ()

v

1
>

Condition on S,, can be written in a more direct way:

S, >sup{seR: e 0N < LY i= Ma(n|N).

Observation: A > 0 optimally restricts s for one n € N.

|dea: average over A > 0 to get compromise for all n > 1.



Mixture Boundaries (2)

e Mixture boundary:
Mq(n) =sup{s e R: [, [eM N < 1y,

which guarantees Py(3n : S, > My(n)) < a.

e Distribution F' over A determines around which n the boundary M, is tightest.
(Knob to tune in practice!)

® Exploit conjugacy to obtain convenient M, (n) = O(y/nlogn).

® Optimise F to approach optimal M, (n) = O(v/nloglogn).

® Reveals M (n) as nonasymptotic analogue of LIL:

. n
lim sup

n—oo v2nloglogn

=1 almost surely.



I Sub-1) Processes and the Master Theorem

Howard et al. (2018a,b) generalise story and provide much more detail. Fantastic
read. Highly recommended!

Key definition: (S¢)ieTuqoy is lo-sub-1) if
any function like CGF
exp(ASy — (M) Vi) < Ly(N\)  almost surely.

variance process, _T T_ supermartingale,
measures time Lo(\) < 4y

Theorem 1 by Howard et al. (2018a): weaker assumptions and stronger results!

Results generalise to continuous time and processes taking values in Banach spaces
(vectors, matrices, ...).

Cool applications: empirical Bernstein UCS to estimate ATE in Neyman—Rubin
model, matrix LIL, ...



Bets and confidence sequences



RECAP: Method of mixtures

A boundary of uniform confidence set can be constructed via
1
M (v) = sup {5 eR: /exp{)\s —Yp(ANv}dF(A) < oz}

yielding P(3n: S, > Mo (V,)) < P(3n: L, > L) < a (Ville).

M, is unimprovable in the sub-Gaussian case (tight for Brownian motion), but can be
loose or computationally demanding in other cases!



Can we do better in some special case?



Bounds and variances

If |X;| <band o? < b%, Bernstein P(S,, > nd)

2

(sub-Gaussian) Hoeffding P(S,, > nd) < e 57

0.8-

0.2-

__ ns2
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Looseness of M, for bounded r.v.s

Mgy(v) = sup{s cR: /exp{/\s — (Ao} w < 1}
O]

Q

(1): Ville valid for any L,,(\) = e*»~%¥(M)Vn X determines where S,, > %’\)Vn + M
tightest, but M, compromises by mixing rather than optimising over .

Idea: Replace dF'(\) by a predictable sequence (A,)n>1. For V,, =n

n+1

E[Lni1 | X1, M) = E[eXi=t M50 x0000x ]
= LnE[e/\n+1Xn+l_¢()\n+1) ‘Xlzna )\l:n] S Ln

which allows estimating \,, closer to an optimal \}.



Looseness of M,, for bounded r.v.s (2)

Ma(v) = sup{s ER: /exp{As — ¥} dF () < ;}
i

(I): If x <, Ly, ‘strict’ supermartingale = Ville loose. Why? Recall in Ville, we
define a stopping time 7 :=inf{n > 1: L,, > 0}

()
E[Lo] > E[L,] > E[L;1,<00] > 6P(3n: L, > 6)

with (%) an equality if L is a martingale (OST), i.e., ¥ = ¥x.

Idea: Use (Ly,)n>1 which is always a martingale. (Comes next!)



Capital processes

Setup: Initial capital Ly = 1. We are tasked with placing a series of predictable bets
An € [-1,1] on a trial outcome X, € {—1,+1}

Li=14+MX3 — X =+1

Lo = (1+)\2X2)<1+)\1)(1> —Xo=-1
n—1

Ly, =1+ )\an)H(l + X\ Xi) — Xp=—1

i=1
where sign(\,,) encodes belief about direction, |A,| confidence.

(Lpn)n>1 is called capital process in game-theoretic probability. Each round we can loose
all or double our capital depending on A,,.



Gambling with Ville
If (X,) C [—1,1] a zero-mean martingale (null), then Aiways has been

L, =TI (1 + N X5)

is a non-negative martingale for (\,) C [-1,1]. I';';'s"é',{'.{};'.}'

L,, > 0 evidence against null as Py(In: L, > é) <
a (Ville) = invert the hypothesis test to get UCS!

Xpn €10,1], E[X,41 | Fn] = p. Play simultaneously for all m € [0, 1] with |\, (m)| <1

n

Kn(m) = H[l + Ai(m)(X; —m)]
i=1

which makes k(1) a martingale. The UCS is then Cl,, = {1 € [0, 1]: K0, (m) < 1}



A betting scheme

Approximate hindsight optimal constant bet X (m) for each m € [0, 1]

1 dlog ICn m) . set
n o 2111+>\(X mNnIZ'Lll—i-)\X -m) 0
not predlctable predictable
Approximating (1 + 2)7! ~ 1 — z for z =~ 0 (Taylor)
1 n—1
n_1 Z(Xz —m)[1 = MXi —m)] = fin—1 —m — A[65_1 + (fin—1 —m)*] =0
=1

flp—1 —m
= M\ (m) = M\, (m) = = -
) = A ) = oy BT

where A, (m) is clipped to [—1, 1] when substituting to KC,,(m).



Uniform confidence sequences

X; ~ Bernoulli(1/2)
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Fixed sample confidence intervals!

X; ~ Bernoulli(1/2)

— 1.00 1.00
g —-— H-CI [H63]
04 2075 075 —— EB-CI[MP09]
- g = ---- VA-EB-CI
g § 0.50 050 N\ e Hedged-CI
0.2 g o
< 0.25 0.25
i=]
S
0.0 . . . . 0.00 . . . . 0.00 . . . .
0.0 02 04 06 08 1.0 102 10%  10*  10° 102 103 10*  10°
X sample size n sample size n
X; ~ Beta(10, 30)
6 -
g —-— H-CI[H63]
306 0.6 —— EB-CI[MP09]
N 4 g § ---- VA-EB-CI
5 § 0.4 047 W\ Hedged-CI
) O
: Z0.2 ©0.2
a
=] —.
0 ©0.0 0.0 —
00 02 04 06 08 1.0 102 103 10 10° 102 103 10*  10°

sample size n

sample size n



E-values and false discovery rate control



Betting scores are e-values

We saw KC,,(m) = [];—; (1 + Xi(X; —m)) can be used to construct

o= fmsim <8} {1 )

Compare: p-values Py, (Hy: 8 = 0y) can be inverted to obtain Cl,, = {6y: I, > o}.

ICr,(m) is an example of a class of random variables called e-values.

® Pointwise: [0, 00| random variable E with Eo[E] < 1.
e Uniform: [0, oc] random variables (E,,),>1 with Eg[E;] < 1 for any stopping time 7.



Are e-values just p-values rebranded?

Not really! Both measure evidence against some null hypothesis but:
® p-value P is [0, 1] random variable satisfying Py(P < «) < «
® c-value E'is [0, 00] random variable satisfying Eo[E] < 1

E-values only require information about expectation, p-values about the CDF!

An e-value can be converted to p-value via Markov

Po(% <) =Po(E > 1) < aFo[E] < o

=

Conversions in the opposite direction exist as well, but neither are statistically efficient!



I When we might prefer e-values over p-values?

@ e-values occur naturally in (sequential) inference
® test supermartingales [/, e?:—¥(N)

* capital processes []\"_,(1+ \; X;)

* likelihood ratios [T}, 228‘;;

@ p-values need tail but e-values only expectation control

® p-values typically more sensitive to misspecification
® many popular p-values based on asymptotics (z/t-statistic, Wilks, etc.)

x_A2x

2
* example: e? 3 valid e-value for any symmetric r.v. X

© p-values often depend on independence
® especially asymptotic arguments (CLT, Wilks, etc.)

® e-values more flexible as we will see next



False discovery rate control

Task: Test multiple hypothesis Hy, ..., Hg.

Issue: FDP = %EFP can be much higher than «
even if each true null has FP probability < a.

|dea: Control FDR = E[FDP].

0.0 0.2 0.4 0.6 0.8 10
TP /K

Benjamini-Hochberg: Order p-values from lowest to largest p(yy, ..., k)

k
< = In : < a—
k ax{k: € [K] Pk <« }

and reject hypotheses associated with the p-values p(y,...,pw,)-



Benjamini-Hochberg with e-values

BH ensures FDR = E[FPR] < « but not if tests are dependent!

Benjamini-Yekutieli: k, = sup{k € [K]: py) < aKLCk}, cr = Zle 1. BY works for any
dependence structure but looses power!

e-BH: Order e-values from largest to lowest epy), ..., ex]

k, = max{k € [K]: ey >

==

|

and reject hypothesis associated with the e-values e[y, ..., e,). e-BH controls FDR < «
even if e, ..., ek are arbitrarily dependent!

Q|



Proving e-BH controls FDR

® Recall K, = max {k € [K]: Ey > é%}

® With N C [K] the true nulls, G C [K] the rejects, and 3 =0

|N N G| ]]-kEG' ) aFE}
FDP = = E < E —1
keN keN

where (%) is by Ej, > Eig,| > 1% =1L forall k € G.

(¢

1
[e%
® Since E[Ei] <1forke N

Ex20 |N|

«
FDR = E[FDP] < - %E[Ekﬂkeg] < o

<«



Wrap-Up



Wrap-Up

Time-uniform Chernoff bounds: (Howard et al., 2018a; Howard et al., 2018b)
® UCSs key to flexible sequential inference.

® Often a martingale behind pointwise concentration bound.
= Enables generalisation to uniform bound.

Bets and confidence sequences: (Waudby-Smith and Ramdas, 2020)
e Links between betting strategies, and test power maximisation.

¢ Tighter bounds (even fixed-sample) for bounded random variables.

E-values and false discovery rate control: (Wang and Ramdas, 2020)
e E-values trade-off power for validity relative to p-values.

® Many uses including FDR control under arbitrary dependencies.
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