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• A powerful and popular probabilistic modelling framework for
nonlinear functions.
• Definition: f ∼ GP(m, k) if, for all (t1, . . . , tn) ∈ T n,f(t1)

...
f(tn)

 ∼ N

m(t1)

...
m(tn)

 ,
k(t1, t1) · · · k(t1, tn)

...
. . .

...
k(tn, t1) · · · k(tn, tn)


.

• Inference and learning: O(n3) time and O(n2) memory.



Multi-Output Gaussian Processes 2/16

• Multi-output GPs go long way back (Matheron, 1969).
• Vector-valued mean function m and matrix-valued kernel K:

m : T → Rp, K : T 2 → Rp×p,

input space
(time)

number of
outputs

m(t) =

E[f1(t)]
...

E[fp(t)]

 ,
K(t, t′) =

cov(f1(t), f1(t
′)) · · · cov(f1(t), fp(t

′))
...

. . .
...

cov(fp(t), f1(t
′)) · · · cov(fp(t), fp(t

′))

 .
• Inference and learning: O(n3p3) time and O(n2p2) memory.

• Often alleviated by exploiting structure in K.



The Linear Mixing Model
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0

f(t) = (f1(t), f2(t))

h1x1(t) h2x2(t)

f(t) = h1x1(t) + h2x2(t) =
[
h1 h2

]
H

[
x1(t)
x2(t)

]
x(t)

.
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Definition (Linear Mixing Model)

x ∼ GP(0,K(t, t′)), f(t) |H,x = Hx(t), y | f ∼ GP(f(t),Λ).

“mixing matrix”

“latent processes”

• f is p-dimensional, x is m-dimensional, and H is p×m.
• Often p� m.

• Equivalently, y ∼ GP(0, HK(t, t′)HT + Λ).
• Generalisation of FA to time series setting.
• Fixed spatial correlation: E[f(t)fT(t)] = HHT if K(t, t) = I.
• Instantaneous mixing: f(t) depends on x(t′) only for t = t′.
• Inference and learning: O(n3m3) time and O(n2m2) memory.



Exploiting the Low-Rank Structure 5/16

Proposition

Let T be the (m× p)-matrix (HTΛ−1H)−1HTΛ−1. Then

conditioning y | f ∼ GP(f(t),Λ) on data Y : O(n3p3)

⇐⇒

conditioning Ty
u

| f ∼ GP(Tf(t)

x(t)

, TΛTT) on data TY : O(n3m3).

• T : “y-space” → “x-space”.
• Ty = arg minx‖Λ

1
2 (y −Hx)‖2.

Y

TY

p(y |Y )

p(u |TY )

inference

O(n3p3)

inference

O(n3m3)

What if TΛTT were diagonal? Then inference decouples into
independent problems!



The Orthogonal Linear Mixing Model



Fixed Orthogonal Basis with Varying
Coefficients
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0

f(t) = (f1(t), f2(t))

h1x1(t)

h2x2(t)

h1x1(t) h2x2(t)

[
h1 h2

]
= H = US

1
2 .

orthogonal

scaling



The Orthogonal Linear Mixing Model 7/16

Definition (Orthogonal Linear Mixing Model)

With K(t, t) = I, H = US
1
2 , and Λ = σ2I +HDHT,

x ∼ GP(0,K(t, t′)), f(t) |H,x = Hx(t), y | f ∼ GP(f(t),Λ).

• Generalisation of PPCA (Tipping and Bishop, 1999) to time
series setting.
• Like GPFA (Yu et al., 2009), but orthogonality built in.
• General spatial correlation: E[f(t)fT(t)] = USUT.
⇒ Suggests way to initialise U and S.
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• Image of noise: TΛTT = σ2S−1 +D. Diagonal!

Y

TY

p(y |Y )

p(u1 | (TY )1:)

p(um | (TY )m:)

inference

O(n3p3)

infer
ence

O(n
3 ) ...inference

O(n3
)

• Inference and learning: O(n3m) time and O(n2m) memory.
⇒ Linear scaling in the number of degrees of freedom!

• Trivially compatible with one-dimensional scaling techniques.
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Proposition

The evidence log p(Y ) is convex in U .



Arbitrary Likelihoods
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+ Computationally efficient
+ Linear scaling in number of degrees of freedom m
+ Trivially compatibly with one-dimensional scaling techniques
+ Convex in U

+ Easy to implement

± Expressivity
± Restricted to orthogonal bases
− Linear correlations

− Cannot handle missing data
− Cannot handle imhomogeneous observation noise

Goal: arbitrary p(y | f) whilst retaining computational efficiency.



Application: Neural Networks with
Time-Varying Weights
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Task: predict mapping z 7→ φ(z, t) that slowly varies with time.
• ???
• Economics?

Generative model:

w ∼ OLMM, φ(z, t) |w = NNw(t)(z).

Inference: VI with an OLMM as computationally efficient q.
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Prior:

p(y, f) = p(y | f)

arbitrary likelihood

p(f).

Approximate posterior (Johnson et al., 2016):

q(f) =
1

Z
p(f) p(ŷ | f, Λ̂)

likelihood “conjugate” to the OLMM

.

ELBO:

L(ŷ, Λ̂) = logZ

evidence of pseudo-observations

+

likelihood correction

Eq(f)[log p(y | f)− log p(ŷ | f, Λ̂)] .

tractable / Monte Carlo tractable

+ Pseudo-evidence logZ and approximate posterior q(f) cheap
+ Easy to implement
± Prior p(f) shared with q(f)

− For k pseudo-points, O(kp) parameters



Variational Inference, Take 2 13/16

Approximate posterior:

q(f) =
1

Z
p(f)p(ŷ | f, Λ̂)

=
1

Z
p(f)p(T ŷ

û

| f, T Λ̂TT

D̂

) =
1

Z
p(f)p(û | f, D̂).

ELBO:

L(û, D̂) = logZ + Eq(f)[log p(y | f)− log p(û | f, D̂)].

+ For k pseudo-points, O(km) parameters



Naturally Mean Field 14/16

• q(f) ∝ p(f)p(û | f, D̂): EP-style approximation in VI setting.
• Consider traditional pseudo-point method (Titsias, 2009):

q(f) =

∫
p(f | f̂)q(f̂) df̂

=

∫
p(f |T f̂

x̂

)q(T f̂) dT f̂ =

∫
p(f | x̂)q(x̂) dx̂.

• Equivalent if q(x̂i) = N (ûi, (K
−1
xi

+ D̂−1i )−1).
• When does q∗(x̂) factorise over the latent processes?

m∏
i=1

q∗(x̂i)
?
= q∗(x̂) = e−L

∗
p(x̂) exp〈log p(y |x)〉p(x | x̂).

1 OLMM!
2 y |x ∼ GP(Hφ(x(t)),Λ) with φ a pointwise nonlinearity.
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• Orthogonal basis decouples inference into independent
problems.
• OLMM can (maybe) function as a computationally efficient

prior / approximate posterior in larger spatio–temporal models.

• Experiments on real-world data!



Outstanding Questions 16/16

• Fixing a computational budget, how does OLMM compare?

• How restrictive is the orthogonality assumption?
• For a given LMM, how close is the closest OLMM?

• When is H identifiable? Connection to ICA?
• How does learned basis compare to other methods, e.g. PCA?

• Can pointwise nonlinearity φ improve learned basis?

• Can orthogonality alleviate downsides of mean-field VI?

These slides: https://wesselb.github.io/pdf/olmm.

https://wesselb.github.io/pdf/olmm
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