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Introduction



Gaussian Processes

e A powerful and popular probabilistic modelling framework for
nonlinear functions.

e Definition: f ~ GP(m,k) if, for all (t1,...,t,) € T™,

f(t) m(t) | [k(tst) o K(tte)
f(tn) m(tn) k(tn,t1) -+ K(tn,tn)

* Inference and learning: O(n?) time and O(n?) memory.



Multi-Output Gaussian Processes

® Multi-output GPs go long way back (Matheron, 1969).
e \/ector-valued mean function m and matrix-valued kernel K:

number of
m: 7- — Rp, K: T2 — Rpo:— Qutputs

ELO] mg
m)=| |
[E(f, ()]
[cov(f1(1). i) -+ cov(fi(t). fy(t")
K(t,1) = : :
[cov(Fy(t). fu(t) -+ cov(fy(t). fy(t"))

* Inference and learning: O(n3p?®) time and O(n?p?) memory.
e Often alleviated by exploiting structure in K.



The Linear Mixing Model



I Fixed Basis with Varying Coefficients

0

F(8) = haza () + haaa(t) = [y ho] B;gg] .

H (t)




I The Linear Mixing Model
“mixing matrix”
Definition (Linear Mixing Model)
z~GP(0,K(t,t)), f(t)|Hz= Hi;(t), ylf~GP(f(t),A).

“latent processes”

f is p-dimensional, x is m-dimensional, and H is p x m.
® Often p > m.

* Equivalently, y ~ GP(0, HK (t,t')HT + A).
Generalisation of FA to time series setting.
Fixed spatial correlation: E[f(t)fT(t)] = HH" if K(t,t) = I.

Instantaneous mixing: f(t) depends on z(t') only for ¢t = ¢'.

Inference and learning: O(n3m?) time and O(n?m?) memory.



Exploiting the Low-Rank Structure

Proposition
Let 7' be the (m x p)-matrix (HTA~'H)"*HTA~L. Then

conditioning y | f ~ GP(f(t),A) on data Y: O(n3p?)

<
conditioning 7y | f ~ GP(T'f(t), TAT") on data 7Y: O(n3m?).
| — | I
u z(t)
inference
Y —— Y
e T: "“y-space’ — “z-space’. o(n®p?) p(yTl )
1
° T = ar min A§ - Hilf . inference
y = argmin,[|A2 (y )2 TY e Ty

O(n3m?)

What if TATT were diagonal? Then inference decouples into
independent problems!



The Orthogonal Linear Mixing Model



Fixed Orthogonal Basis with Varying
Coefficients

hoita (1)

£(0) £ (Fa(t), Fa()

S~_7

hoxa(t)

hll’l (t)l

0 scaling

|

[hy he] = H=US>.

orthogonal



The Orthogonal Linear Mixing Model

Definition (Orthogonal Linear Mixing Model)

With K (t,t) = I, H =US?, and A = 0T + HDHT,

xNg,P(QK(t’t/))v f(t)|H,:E:H.’IJ(t), y|ngP(f(t)’A)

® Generalisation of PPCA (Tipping and Bishop, 1999) to time
series setting.

e Like GPFA (Yu et al., 2009), but orthogonality built in.

e General spatial correlation: E[f(¢)fT(t)] = USUT.
= Suggests way to initialise U and S.



I Inference and Learning

* Image of noise: TATT = ¢2S~! + D. Diagonall

inference

Y —————p(y|Y)
O(n°p”) '\
we_w p(ur [ (TY)1:)

ke’

o) @)

TY _

."fe’enc
T (7))

)

* Inference and learning: O(n3m) time and O(n?/) memory.
> Linear scaling in the number of degrees of freedom!

e Trivially compatible with one-dimensional scaling techniques.



Inference and Learning (2)

—e— LMM —e— LMM
4001 —— oLMM 4091 —— oLMM
i ? 304
= 300 3 30
P £
£ 200 A 3 20
: :
=
100 4 10 A
0 1 0
1 5 10 15 20 25 1 5 10 15 20 25
Number of latent processes m Number of latent processes m

The evidence logp(Y') is convex in U.



Arbitrary Likelihoods



Recapitulation of the OLMM

+ Computationally efficient

+ Linear scaling in number of degrees of freedom m
+ Trivially compatibly with one-dimensional scaling techniques
+ Convex in U

+ Easy to implement

Expressivity
Restricted to orthogonal bases
— Linear correlations

— Cannot handle missing data

— Cannot handle imhomogeneous observation noise

Goal: arbitrary p(y | f) whilst retaining computational efficiency.



Application: Neural Networks with
Time-Varying Weights

Task: predict mapping z — ¢(z,t) that slowly varies with time.
e 777

e Economics?

Generative model:

w ~ OLMM,  ¢(z,t) [w = NN (2).

Inference: VI with an OLMM as computationally efficient g.



Variational Inference

Prior: Approximate posterior (Johnson et al., 2016):
1 o
p(y, f) =py | f)p(f) a(f) = p(F)p@|f,A).
] —_
arbitrary likelihood likelihood “conjugate” to the OLMM
ELBO:

likelihood correction

L(9,A) = log Z +Eqypy[log p(y | ) — logp(g | £, A)].
| I
evidence of pseudo-observations T

tractable / Monte Carlo  tractable
+ Pseudo-evidence log Z and approximate posterior ¢(f) cheap
+ Easy to implement
Prior p(f) shared with ¢(f)
— For k pseudo-points, O(kp) parameters



Variational Inference, Take 2

Approximate posterior:

1

a(f) = Zp(N)p(] £, 4)

= (DRI | 1 TATT) = —p(fp(al £, D).
@ D

ELBO:

L(i, D) =log Z + Eypllogp(y | f) —logp(a| f, D)].

+ For k pseudo-points, O(kim) parameters



Naturally Mean Field

q(f) o< p(f)p(a] f,ﬁ): EP-style approximation in VI setting.
Consider traditional pseudo-point method (Titsias, 2009):

olf) = [ p(r1 ah)af
= [ Thariyar = [ (s 0@ as

[
z

Equivalent if q(&;) = N (a;, (K;' + D7 hh.
When does ¢*(&) factorise over the latent processes?

Hq

@ OLMM!
D ylz~GP(Ho(x(t)), ) with ¢ a pointwise nonlinearity.

= e p(2) exp(log p(y | 2)) p(z | 2)-

II~Q



(Preliminary) Conclusions



I (Preliminary) Conclusions

e Orthogonal basis decouples inference into independent
problems.

® OLMM can function as a computationally efficient
prior / approximate posterior in larger spatio—temporal models.

e Experiments on real-world data!



Outstanding Questions

Fixing a computational budget, how does OLMM compare?

How restrictive is the orthogonality assumption?
® For a given LMM, how close is the closest OLMM?

When is H identifiable? Connection to ICA?

How does learned basis compare to other methods, e.g. PCA?

® Can pointwise nonlinearity ¢ improve learned basis?

Can orthogonality alleviate downsides of mean-field VI?

These slides: https://wesselb.github.io/pdf/olmm.


https://wesselb.github.io/pdf/olmm
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