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Today’s Message 2/25

✗ A specific model
✗ Restricted to a meta-learning setting
✗ Very unique and new

Neural processes:
• a flexible collection of architectural neural

network techniques
• for general supervised learning problems.

e.g., multidimensional irregular off-the-grid data



Introduction to Neural Processes



Meta-Learning and Neural Processes: Learning to Predict 3/25
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Definitions and Notation 4/25

• A neural process is a function πθ : D → P parametrised with neural networks.

intuitively, (µ, σ2) at test inputs; rigorously,
the space of all stochastic processes

• qθ(y | x, D): the density of πθ(D) at x.

• NPs operate in setting of meta-learning, with meta–data sets:

(Dm)Mm=1 with Dm = D(c)
m ∪D(t)

m .
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• Training with MLE:

θ̂ ∈ argmax
θ∈Θ

M∑
m=1

log qθ(y
(t)
m ℓ | x(t)

m , D(c)
m ).

will omit when
clear from context



The Appeal of Neural Processes 5/25

✓ Extremely versatile and flexible
✓ Fast, probabilistic predictions

✓ Simple to train
✓ Work very well in practice

• Climate model downscaling (Markou et al., 2022):



The Appeal of Neural Processes (2) 6/25

• Environmental sensor placement in Antarctica (Andersson et al., 2023):

positive covariance extends to edge of
Ross ice shelf when sea ice is present



Two Axes of Neural Process Design 7/25

• Starting point: want to parametrise πθ : D → P.
“prediction map”

1 Choose the form of the predictions.
• For example, q(y |x,D) = N (y |µθ(x,D), σ2

θ(x,D)).

µθ : X ×D → R
“mean function”

σ2
θ : X ×D → [0,∞)

“variance function”

2 Parametrise these parameter functions with a neural network architecture.
• How do we parametrise functions on D?



First Axis: Form of Prediction 8/25

• Conditional neural processes (CNPs; Garnelo, Rosenbaum, et al., 2018):

q(y |D) = N
([

y1
y2

] ∣∣∣∣ [µ1(D)
µ2(D)

]
,

[
σ2
1(D) 0
0 σ2

2(D)

])
.

σ2(x2, D)
• Latent-variable neural processes (LNPs; Garnelo, Schwarz, et al., 2018):

q(y |D) =

∫
N
([

y1
y2

] ∣∣∣∣ [µ1(D, z)
µ2(D, z)

]
,

[
σ2
2(D, z) 0

0 σ2
2(D, z)

])
q(z |D) dz.

• Gaussian neural processes (GNPs; Markou et al., 2022):

q(y |D) = N
([

y1
y2

] ∣∣∣∣ [µ1(D)
µ2(D)

]
,

[
Σ11(D) Σ12(D)
Σ21(D) Σ22(D)

])
.

• Non-Gaussian distributions, mixture distributions, normalising flows... much more!



Second Axis: Neural Network Architecture 9/25

• Parametrise parameter functions of the form fθ : X ×D → Z.

e.g., µθ : X ×D → R

General parametrisation of fθ:

• Deep set1: CNP2, NP3.
• Transformer4: ANP5, TNP6, LBANP7.

T◦fθ=fθ◦T for all T in symmetry group:
• Equivariance w.r.t. context data D:

ConvCNP8, EquivCNP9, RCNP10.
• Equivariance w.r.t. input x: SteerCNP11.

π

shift

π

shift

1Zaheer et al. (2017) and Edwards et al. (2017); 2Garnelo, Rosenbaum, et al. (2018); 3Garnelo, Schwarz, et al. (2018); 4Vaswani et al. (2017); 5Kim et al.
(2019); 6Nguyen and Grover (2022); 7Feng et al. (2023); 8Gordon et al. (2020); 9Kawano et al. (2021); 10Huang et al. (2023); 11Holderrieth et al. (2021).



Autoregressive Conditional Neural Processes



Neural Processes Are Not Without Challenges... 10/25

• Prediction by a Conditional Neural Process (CNP):

Data D                    
CNP prediction π(D)

Sample of π(D)

Correlated Non-Gaussian Exact Consistent
predictions predictions training predictions

CNPs ✗ ✓ ✓ ✓
Gaussian NPs ✓ ✗ ✓ ✓
Latent-variable NPs ✓ ✓ ✗ ✓
Autoregressive CNPs (AR CNPs) ✓ ✓ ✓ ✗



Autoregressive Conditional Neural Processes 11/25

• Idea: feed output of CNP back into the model in an autoregressive fashion:

q(AR CNP)(y1:3 |D) = q(CNP)(y1 |D)q(CNP)(y2 | y1, D)q(CNP)(y3 | y1, y2, D).

• AR modelling certainly not new, but not yet explored for NPs.

✓ Correlated and non-Gaussian predictions!
✓ No modifications to model or training procedure!

✗ Predictions depend on number and order of data (predictions no longer consistent)
✗ Requires multiple forward passes of CNP (Prop. 2.2 offers a partial remedy!)

only run CNPs with Gaussian marginals in
AR mode: computationally cheapest class



AR CNPs as a Neural Density Estimator 12/25

PixelCNN (Oord et al., 2016): the pixels of an image from top left to bottom right.
AR CNPs: all target points

uncountably many!

in any order.

• A slightly insane diagram in the paper:



Example: ConvCNP (Gordon et al., 2020) on Sawtooth Data 13/25

ConvCNP:

AR ConvCNP:

Same model!



Big Surprise: AR ConvCNP Performs Really Well 14/25



Some Intuition 15/25

q(AR CNP)(y1:100 |D) = q(CNP)(y1 |D)q(CNP)(y2 | y1, D) · · · q(CNP)(y100 |y1:99, D).

Gaussian approx. becomes more accurate

• q(CNP)(y1 |D) likely a poor approximation.
• Insight: when conditioned on many observations, the true data becomes Gaussian:

p(f |many observations) is approximately Gaussian. (≈ Bernstein–von Mises)

⇒ q(CNP)(yi |y1:(i−1), D) more accurate as i increases!

• First few AR steps poor, then become more accurate.

• Different random order for every sample: average out first few bad AR steps.



Some Intuition (2) 16/25
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AR Sampling Design Space 17/25

Naively AR sampling 100 target points:

q(AR CNP)(y1:100 |D) = q(CNP)(y1 |D)q(CNP)(y2 | y1, D) · · · q(CNP)(y100 |y1:99, D).

✓ Prediction over y1:100 correlated! ✗ Requires 100 model forwards

Sample in blocks of 10 points:

q(AR CNP)(y1:100 |D) = q(CNP)(y1:10 |D)q(CNP)(y11:20 |y1:10, D) · · · q(CNP)(y91:100 |y1:90, D).

✗ No correlations within a block ✓ Only 10 model forwards!

Run a GNP in AR mode:

q(AR GNP)(y1:100 |D) = q(GNP)(y1:10 |D)q(GNP)(y11:20 |y1:10, D) · · · q(GNP)(y91:100 |y1:90, D).

✓ Correlations within a block! ✓ Only 10 model forwards!



Today’s Message 18/25

AR (C)NPs equip the NP toolbox with a new tool where modelling complexity and computa-
tional expense at training time can be traded for computational expense at test time.



Experiment: Cloud Cover Over Antarctica 19/25

• Cloud cover is in [0, 1], so use categorical–Beta mixture prediction:

q(y |x, D) =

|y|∏
i=1


p0,θ if yi = 0,

p1,θ if yi = 1,

(1− p0,θ − p1,θ) Beta(yi;αθ, βθ) if yi ∈ (0, 1).

βθ = βθ(xi, D), et cetera



Prediction Map Approximation: A Theoretical Analysis



Some Burning Theoretical Questions 20/25

AR CNPs:
• Guarantees about the performance of AR CNPs w.r.t. to other NPs?
• Do predictions of AR CNPs converge to the ground truth in some sense?

NPs in general:
• CNPs are iffy. Can we establish rigorous theoretical foundations without issues?
• In the limit of infinite data and network capacity, what do neural processes converge to?
• Convergence in which sense? Under what conditions? Rate of convergence?

Wessel P. Bruinsma (2022). “Convolutional Conditional Neural Processes”. PhD thesis.
Department of Engineering, University of Cambridge. DOI: 10.17863/CAM.100216. URL:
https://www.repository.cam.ac.uk/handle/1810/354383

https://www.repository.cam.ac.uk/handle/1810/354383


Sketch of Theoretical Analysis 21/25

• Prediction map: π : D → Q.
e.g., CNPs choose all GPs with independent predictions

• Posit a ground truth stochastic process f , possibly non-Gaussian.
• Posterior prediction map: πf : D → P, πf (D) = p(f |D).
• Approximate πf with a neural process πθ : D → Q.
• Do this by minimising the neural process objective LNP:

θ̂ ∈ argmin LNP(πf , πθ), LNP(πf , πθ) = Ep(x)p(D)[KL(P
σf
x πf (D), P σ

x πθ(D))].

f(x) + ε ∼ Pσ
x µ

with f ∼ µ and ε ∼ N (0, σ2I)

• Study minimisers for CNPs and GNPs.
convergence to minimiser (consistency); compare minimisers for CNPs and GNPs



Some Results From Bruinsma (2022) 22/25

• Sec 3.2: Rigorous theoretical foundations are possible.
• Props 3.11: Neural process objective is well defined.
• Props 3.26 and 3.27: Identification of minimiser of LNP for CNPs and GNPs.

⇒ CNPs need target set size of at least one, and GNPs need two. LNPs may need infinite.
⇒ CNPs cannot disentangle epistemic and aleatoric uncertainty, but GNPs can!
• Props 3.34 and 3.35: Precise conditions for consistency of CNPs and GNPs.
• Thm 5.7: Translation-equivariant NPs generalise spatially.
• Thm 5.15: In the limit of infinite data, AR CNPs always outperform GNPs.

Many results obvious...
But exciting that all can be established in one unifying theoretical framework!



Unresolved Questions 23/25

• Do predictions of AR CNPs converge to the ground truth in some sense?

• Some theoretical wrinkles for ConvDeepSets (Gordon et al., 2020) to iron out.
• Unclarity around the representation capacity of ConvGNPs (Markou et al., 2022).

• Rate of convergence w.r.t. meta–data set size M? Suspect 1/
√
M .

• Analysis in setting of infinitely wide neural networks. Finite widths?

• Approximate equivariances? Got some preliminary results!



Conclusion



Wrapping Up 24/25

Neural processes:
• a flexible collection of architectural neural

network techniques
• for general supervised learning problems.

Paper:
wessel.ai/pdf/arcnps

This presentation:
wessel.ai/pdf/arcnps-mlls

Code:
github.com/wesselb/neuralprocesses

Would you like to collaborate? Reach out at hi@wessel.ai

https://wessel.ai/pdf/arcnps
https://wessel.ai/pdf/arcnps-mlls
https://github.com/wesselb/neuralprocesses


Microsoft Research 25/25

• Member of the PDE Team within the AI4Science initiative at Microsoft Research
• We’re building a foundation model for weather and climate prediction:

Nguyen, Brandstetter, et al. (2023)

Interested? Reach out at wbruinsma@microsoft.com
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