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Meta-Learning and Neural Processes
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The Appeal of Neural Processes

v Extremely versatile and flexible v Simple to train

v Fast, probabilistic predictions v" Work well in practice

¢ Climate model downscaling (Markou et al., 2022):
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But Neural Processes Are Not Without Challenges...

¢ Conditional neural process (CNP; Garnelo, Rosenbaum, et al., 2018):

o Nt
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Autoregressive Conditional Neural Processes

¢ |dea: feed output of CNP back into the model in an autoregressive fashion:

gARNP) (y1 2| D) = q(y1 | D)a(ya | y1, D)a(ys | y1, y2, D).
4 CNP pred. of y3

® AR modelling certainly not new, but not yet explored for NPs. given y1, y2, and D

v Correlated and non-Gaussian predictions!

v" No modifications to model or training procedure!

X Predictions depend on number and order of data (predictions no longer consistent)
X Requires multiple forward passes of CNP (Prop. 2.2 offers a partial remedy!)



I Example: ConvCNP (Gordon et al., 2020) Trained on Sawtooth Data
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AR ConvCNP:




So What Else Is in the Paper?

Prop. 2.1: In an idealised case, AR CNPs are guaranteed to perform better than GNPs.
A detailed comparison of AR CNPs and neural density estimators (NDEs).
Exceptional performance of the AR ConvCNP (Gordon et al., 2020) in 60 synthetic scenarios.

A variety of real-world experiments, including a challenging cloud cover experiment:
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Code: https://github.com/wesselb/neuralprocesses

Please come see us at the poster, or contact us at wbruinsma@mic rosoft.com! :)


https://github.com/wesselb/neuralprocesses

