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Abstract
In drug development, early phase dose-finding
clinical trials are carried out to identify an opti-
mal dose to administer to patients in larger confir-
matory clinical trials. Standard trial procedures
do not optimize for participant benefit and do
not consider participant heterogeneity, despite
consequences to participants’ health and down-
stream impacts to under-represented population
subgroups. Many novel drugs also do not obey
parametric modelling assumptions made in com-
mon dose-finding procedures. We present Safe
Allocation for Exploration of Treatments (SAFE-
T), a procedure for adaptive dose-finding that ad-
heres to safety constraints, improves utility for
heterogeneous participants, and works well with
small sample sizes. SAFE-T flexibly learns non-
parametric multi-output Gaussian process models
for dose toxicity and efficacy, using Bayesian opti-
mization, and provides accurate final dose recom-
mendations. We provide theoretical guarantees
for the satisfaction of safety constraints. Using a
comprehensive set of realistic synthetic scenarios,
we demonstrate empirically that SAFE-T generally
outperforms comparable methods and maintains
performance across variations in sample size and
subgroup distribution. Finally, we extend SAFE-T
to a new adaptive setting, demonstrating its poten-
tial to improve traditional clinical trial procedures.

1. Introduction
New drugs and treatments are typically first investigated
in early phase dose-finding studies, which aim to assess
safety and recommended dosing for future study. In early
phase trials, participant safety is prioritized through strict
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safeguards against adverse outcomes (toxicity); however,
participant benefit (efficacy) is not typically considered. Re-
searchers are increasingly adopting adaptive trial methods,
where trial parameters may change based on ongoing out-
comes, potentially improving both the efficiency of a trial
and the toxicity/efficacy outcomes experienced by trial par-
ticipants (Villar et al., 2015; Riviere et al., 2018).

Dose-finding studies commonly use the rule-based 3+3
method, which allocates increasing doses to cohorts
of size 3, terminating if a threshold of toxicity is ex-
ceeded (Kurzrock et al., 2021), or the adaptive continual re-
assessment method (CRM), which allocates doses based on a
continually updated parametric model for toxicity (Wheeler
et al., 2019). Both methods suffer from drawbacks: nei-
ther method optimizes over efficacy for participants, the
3+3 method has been widely criticized for its inefficiency
due to unnecessary early trial termination (Love et al., 2017;
Kurzrock et al., 2021), and CRM requires a parametric model
and strict prior assumptions, leaving room for misspecifica-
tion errors (Cheung & Chappell, 2002). Both methods are
increasingly unsuitable for modeling dose-response; newly
developed drugs may not adhere to requisite prior assump-
tions, particularly that dose-toxicity and dose-efficacy are
monotonically increasing. Innovative therapies, such as
immune-oncology agents, may have plateauing or parabolic
efficacy profiles (Wages et al., 2018; Zhang et al., 2006).

Furthermore, current dose-finding practices have given rise
to ethical concerns and have potentially contributed to so-
cietal health inequalities. Clinical trials have often been
criticized for therapeutic misconception, where participants
incorrectly believe that the primary goal of a trial is to
improve their own health outcomes, while in practice, sci-
entific validity is prioritized over patient health and trials
do not optimize for participant benefit (Chien et al., 2022).
Standard methods also assume that the trial population is
homogeneous, not accounting for possible variations in tox-
icity and efficacy due to patient heterogeneity. Due to these
assumptions and persisting inequalities in subject selection
for clinical trials (Steinberg et al., 2021), reported optimal
drug doses are often not generalizable to those who are
under-represented in early-phase trials, such as women and
under-studied racial/ethnic groups (Özdemir et al., 2022).
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Research has shown that women experience a far greater risk
of adverse drug effects across all drug classes as compared
to men (Zucker & Prendergast, 2020; Unger et al., 2022)
and that race/ethnicity can also impact drug response (Ra-
mamoorthy et al., 2021; Dickmann & Schutzman, 2018).
This necessitates trial methods that can optimize for partici-
pant benefit and address heterogeneity, while still ensuring
safety and learning accurate dose recommendations.

Our contributions. While we cannot address the many
complex societal and methodological factors that surround
inequality in clinical trials, we make a small contribution
with our adaptive dose-finding procedure, Safe Allocation
for Exploration of Treatments (SAFE-T). SAFE-T models
toxicity and efficacy using multi-output Gaussian process
classification, which can capture variations between het-
erogeneous participant subgroups and can flexibly handle
different dose-response profiles. Using these models, SAFE-
T allocates doses to trial participants while balancing safety
and exploration, resulting in improved safety, participant
utility, and final dose recommendation accuracy. SAFE-T
can be extended to a novel trial setting where dose rec-
ommendations are provided over a continuous range. We
provide theoretical results for SAFE-T, guaranteeing safety
with high probability. In extensive experiments, we compare
the performance of SAFE-T to other methods with respect
to safety, participant utility, and final dose recommendation
accuracy, across varying subgroup ratios and sample sizes.

Simultaneously, we seek to address a concerning health in-
equity: certain population subgroups may experience greater
risks of adverse drug effects due to flaws in the current
methodology of dose-finding trials. Standard trial methods
assume that the trial population is homogeneous. This, in
conjunction with existing inequalities in trial subject selec-
tion, may lead to disparities in patient utility during the
trial (from sub-optimal dose allocation) and after the trial
(from non-representative dose recommendations). We tackle
inequity through proper consideration of heterogeneous pa-
tient populations, rather than standard fairness constraints.
We also examine subgroup disparities in careful experimen-
tal evaluation, finding that SAFE-T improves performance
(in safety, accuracy, utility, Sec. 5.1) for patients and reduces
disparities between subgroups (Sec. 5.2).

Related work. Recent works in machine learning for dose-
finding trials have mostly concentrated on multi-armed ban-
dit methods (Aziz et al., 2020; Riviere et al., 2018; Gariv-
ier et al., 2017), with some including explicit safety con-
straints (Lee et al., 2020; Shen et al., 2020; Wang et al.,
2021). These works consider dose-finding scenarios with
monotonically increasing toxicity and efficacy curves, with
Aziz et al. (2020); Shen et al. (2020) also providing sepa-
rate algorithms for dose selection for plateauing efficacy
curves. These works typically assume a logistic para-

metric formO’Quigley et al. (1990) of the dose-toxicity
model (Aziz et al., 2020; Lee et al., 2020; Shen et al., 2020;
Riviere et al., 2018), or else do not learn models of dose-
response relationships, providing point-estimates of treat-
ment arm performance (Wang et al., 2021; Garivier et al.,
2017). Lee et al. (2020), investigates a setting most similar
to ours, proposing a dose-finding method that addresses
heterogeneous populations. However, they use an inflexible
parametric model and rely on an unsafe burn-in period.

While we focus on a dose-finding setting, our problem is
general: given a true underlying safety function and reward
function, we desire an algorithm that maximizes reward
without violating safety constraints, while accurately learn-
ing decision boundaries associated with a small, hetero-
geneous data set. Safe exploration has been addressed in
the context of bandits (Kazerouni et al., 2016) and active
learning with Gaussian processes (GPs) (Sui et al., 2015;
2018; Schreiter et al., 2015; Turchetta et al., 2019; Bottero
et al., 2022; Berkenkamp et al., 2016; Turchetta et al., 2016).
Of these, our setting is most similar to STAGEOPT (Sui
et al., 2018), which optimizes a reward function over a
safe range determined by a separate safety function. In
contrast to our binary outcome setting, these works mostly
consider continuous outcomes under a Gaussian additive
noise model, allowing use of existing theoretical bounds
for GP confidence intervals (Srinivas et al., 2009; Chowd-
hury & Gopalan, 2017). The exception is Schreiter et al.
(2015), which classifies a safe region based on binary safety
indicators, but does not consider a separate reward function.

2. Dose-Finding Problem Statement
Problem set-up. Fig. 1a illustrates the problem setting,
which reflects standard practice (Wheeler et al., 2019). N
trial participants are considered sequentially; each partic-
ipant is allocated one of K discrete doses, indexed by
k ∈ K = {1, ...,K}, where dk ∈ D represents dosage val-
ues. At each time n, a new participant of known subgroup
sn ∈ S = {1, ..., S}1, with arrival probabilities πs, is allo-
cated to dose mn ∈ K based on a selection rule. For each
pair (d, s), qs(d) defines true toxicity probabilities and ps(d)
defines true efficacy probabilities. We observe the binary
toxicity outcome Yn ∼ Ber(qs(dmn

)), Yn = +1 indicating
an adverse reaction; and the binary efficacy outcome Xn ∼
Ber(ps(dmn)), Xn = +1 indicating effective treatment.

At the outset of a trial, based on prior clinical knowledge,
investigators specify adverse events that represent toxic out-
comes, responses that qualify as effective outcomes, a maxi-
mum toxicity threshold, τT , and a minimum efficacy thresh-
old, τE (Wheeler et al., 2019). A dose d for a patient in
subgroup s is in an acceptable safe and effective range when

1Throughout, we drop the subscript n from sn for simplicity.
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(a) (b)

Figure 1: (a) Each subgroup has a corresponding probability
of toxicity ( ), probability of efficacy ( ), and optimal
dose (●). Here, both subgroups 0 ( ) and 1 ( ) experience
the same dose-toxicity responses. Safe doses fall within the
range of the maximum toxicity threshold ( ) and minimum
efficacy threshold ( ) are also depicted. (b) The Thall
utility measure trades off toxicity and efficacy.

qs(d) ≤ τT and ps(d) ≥ τE . Trials using a model-based
methodology estimate the dose-toxicity function q̂s(d) and
sometimes the dose-efficacy function p̂s(d). At trial con-
clusion, a final recommendation rule recommends doses
for further examination in downstream trials. There is no
underlying truth for optimality; standard dose-finding meth-
ods recommend the highest safe dose, under the assumption
that efficacy is monotonically increasing. However, in novel
treatments, dose-efficacy may plateau or be parabolic, where
the highest safe dose is not optimal (Wages et al., 2018).

Importance of safety. Because dose-finding trials investi-
gate treatments where adverse effects are largely unknown,
the safety of participants is of primary importance. Any
dose allocation procedure must incorporate practical safety
constraints alongside theoretical safety guarantees (which
may rest on untestable assumptions). For example, meth-
ods that require an unsafe burn-in period (Lee et al., 2020;
Shen et al., 2020), where a bandit algorithm initializes by
selecting each arm in succession, cannot be used in practice.

Patient heterogeneity. The trial population may be het-
erogeneous, where different patient covariate values may
correspond to different dose-response profiles, which may
not be known a priori (Thomas et al., 2018). Patient het-
erogeneity is typically not investigated in current practice,
leading to results that may reflect the (unequal) distribu-
tion of the recruited population (Wages et al., 2015); con-
sequently, women and ethnic minorities may experience
disparate impacts for the same drugs (Unger et al., 2022;
Ramamoorthy et al., 2021). We are concerned with miti-
gating disparities caused by standard methods, particularly
across protected subgroups, often defined by demographic
characteristics (Barocas et al., 2023; Mehrabi et al., 2019).
Our work thus focuses on pre-defined heterogeneous sub-
groups, such as biological sex, which has been shown to
impact toxicity and efficacy outcomes (Unger et al., 2022;
Ramamoorthy et al., 2021). This setting has received some

attention in the clinical trials literature (Chapple & Thall,
2018; Ivanova & Wang, 2006; Salter et al., 2015; Morita
et al., 2017) and in ML (Aziz et al., 2020; Lee et al., 2020),
under similar motivations for health equity.

However, relying on pre-defined subgroups is limiting, es-
pecially when considering intersectionality; we encounter
the issue of infinite regress, where computation is chal-
lenged by the presence of 1) too many subgroups due to
many considered attributes and 2) small size of resultant
subgroups (Kong, 2022). Kong (2022) recommends in-
stead to “proactively challenge oppression and make society
fairer,” particularly through collaboration with domain ex-
perts. While imperfect, our work is a first step towards ad-
dressing the pervasive issue of inequity in dose-finding trials
caused by unrecognized patient heterogeneity; some major
sources of heterogeneity are already known (such as biolog-
ical sex) and we can begin by addressing these. Future work
may focus, for example, on individualized dose-finding that
does not require pre-defined subdivision of patients.

Additional considerations. We also take into account
two key considerations: sample size and misspecification.
As most early phase trials include fewer than 100 partici-
pants (Can, 2022; Huang et al., 2015), dose-response models
should perform well with small sample sizes. It is also not
possible to know true underlying dose-response functions;
models should be robust to misspecification.

3. The SAFE-T Algorithm
3.1. Overview

SAFE-T consists of three components: (1) a safe exploration
stage, which encourages allocation to unexplored doses
(2) an efficacy optimization stage, and (3) a final dose rec-
ommendation rule. The first two stages define selection
rules for dose allocation that balance safety, learning, and
utility. SAFE-T is initialized with a set of N0 participants
assigned the lowest dose, d0, which is presumed to be safe.
SAFE-T runs the first safe exploration stage for participants
n ∈ (N0, N0 + N1] and the second efficacy optimization
stage over the remaining participants. SAFE-T terminates
early if the estimated safe set of doses is empty for Nstop
participants during the trial, as a safeguard in case d0 is not
safe. At trial conclusion, SAFE-T uses Thall utility (Thall &
Cook, 2004) to select final recommended doses by subgroup
for further clinical study. We first discuss important compo-
nents of SAFE-T and then detail the algorithm in Section 3.2,
with pseudocode in Algorithm 1.

GP classification. We model the dose-response with GP
classification (Rasmussen & Williams, 2003), where a latent
discriminative function h : X → R is modelled with a stan-
dard GP prior with mean µ(·) and covariance function k(·, ·).
The latent h(x) values are mapped through a link function,
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in our case the Gaussian CDF Φ, to determine class prob-
abilities over the binary outcome Y such that Y | h(x) ∼
Ber(Φ(h(x))). Dose-toxicity, q1:S(d), and dose-efficacy,
p1:S(d), can be viewed as multi-valued functions, where
s corresponds to a subgroup. SAFE-T models both func-
tions with two independent multi-output Gaussian processes
(MOGPs), using the linear model of co-regionalization
(LMC) (Journel & Huijbregts, 1976). We let f1:S(d) and
g1:S(d) be two MOGPs such that Φ(fs(d)) = ps(d) and
Φ(gs(d)) = qs(d). We then define dose-toxicity estimates
as q̂s(d) = E[Φ(ĝs(d))] and dose-efficacy estimates as
p̂s(d) = E[Φ(f̂s(d))] where are ĝs(d) and f̂s(d) are random
variables distributed according to the posterior distributions
of of gs(d) and fs(d) given all observations so far. The hy-
perparameters of the MOGPs are chosen using heuristics, as
described in App. D.1. GPs allow for flexibility in modelling
dose-response profiles, unlike commonly used parametric
models (Wheeler et al., 2019; Lee et al., 2020), which may
be severely misspecified with respect to the ground truth.

Early stopping. We assign the first N0 participants to a
known safe dose d0; in standard practice, the lowest dose
(presumed to be safe) is administered to an initial trial co-
hort (Wheeler et al., 2019). A guaranteed initial safe set
is also a common assumption in the safe exploration litera-
ture (Sui et al., 2015; 2018; Schreiter et al., 2015; Bottero
et al., 2022), to prevent unnecessary early stopping due to
an empty safe set. In Theorem 4.1, we provide a lower
bound for N0 to guarantee success of SAFE-T. However,
as with any theoretical bound, we rely on assumptions that
may be violated in practice: that we have knowledge of a
safe d0. We thus also provide a practical early stopping
criterion: after Nstop safety violations, the trial is terminated
and recommendations are made with the existing informa-
tion. Nstop can be set according to clinical guidelines or
participant preference; analogous parameters are used in the
standard 3+3 and CRM trial methods (Wheeler et al., 2019).

Safety constraint. For the remaining participants, SAFE-
T guarantees, with probability at least 1 − δT , that all
doses dN0+1:n are safe, such that the safety constraint
Φ(g(d)) ≤ τT is satisfied. We achieve this guarantee by
only considering doses d that satisfy the safety constraint:

µĝs(d) + νTσĝs(d) ≤ ρT (1)

where µĝs(d) and σ2
ĝs
(d) are the mean and variance of ĝs(d).

Set ρT = Φ−1(τT ) and νT = Φ−1(1− δT
N−N0

) > 0, where
δT ∈ (0, 1

2 ). Further details in Theorem 4.2.

Utility measure. We adopt a notion of utility for dose-
finding trial participants as proposed by Thall & Cook
(2004) and further used in (Koopmeiners & Modiano, 2014),
depicted in Figure 1b. Thall utility is a weighted Lp norm
that codifies a trade-off between toxicity and efficacy:

U(pE , pT ) = 1− [(pT /τT )
p + ((1− pE)/(1− τE))

p]1/p (2)

Algorithm 1 SAFE-T Algorithm
1: Input: subgroups S, dose indices K, num. patients N ,

num. initial safe set N0, safe expansion timesteps N1, tox-
icity threshold τT , safety parameter νT , GP prior for toxi-
city func. g1:S(d) ∼ MOGP, GP prior for efficacy func.
f1:S(d) ∼ MOGP, utility func. U(pE , pT )

2: Initialize: n = 1, Bs,0 = ∅ for all s ∈ S, ĝ1:S(d) ∼
p(g1:S(d)), and f̂1:S(d) ∼ p(f1:S(d))

3: while n ≤ N do
4: if n ≤ N0 then # Select lowest dose for N0 iterations.
5: mn = 0
6: else # Initialization done. Safe dynamic dose selection.
7: As,n = K ∩ (Bs,n−1 ∪ {max(Bs,n−1) + 1})
8: Ms,n = {k ∈ As,n|µĝs(dk) + νTσĝs(dk) ≤ Φ−1(τT )}
9: if N0 < n ≤ N1 then # Safe exploration stage

10: if max (Ms,n) /∈ Bs,n−1 then
11: mn = max(Ms,n) # Increase to highest safe dose.
12: else
13: mn = argmax

k∈Ms,n

cn(dk) # Reduce uncertainty.
14: end if
15: end if
16: if N1 < n ≤ N then # Safe optimization stage
17: mn = argmaxk∈Ms,n

ACQUIS.f̂s(dk)
18: end if
19: end if
20: Administer dose dmn

21: Observe toxicity Yn, efficacy Xn

22: Update posteriors ĝ1:S(d), f̂1:S(d)
23: Bs,n = Bs,n−1 ∪ {mn}
24: n← n+ 1
25: end while
26: for all s ∈ S do
27: Ms,final = {k ∈ Bs,N |µĝs(dk) + νTσĝs(dk) ≤ Φ−1(τT )}
28: ms,final = argmaxk∈Ms,final

U(p̂s(dk), q̂s(dk))

29: end for
30: Output: for every subgroup s ∈ S, recommend dose dms,final

where pT is the probability of toxicity, pE the probability
of an effective treatment, and p is elicited from trial practi-
tioners. Details on the selection of p appear in App. A.

3.2. Algorithm description

During trial: Safe exploration stage. For each subgroup
s, at each timestep n, SAFE-T maintains a set of previously
sampled doses, Ps,n, which is empty at the beginning of
a trial. Throughout, dose sets are composed of dose in-
dices. The available set of doses, As,n = K ∩ (Ps,n ∪
{max(Ps,n) + 1}), includes all doses that have been previ-
ously sampled and the next highest dose (unless the highest
dose has been sampled already or the next highest dose falls
outside K). The safe set of doses are those that satisfy Eqn. 1:
Ms,n = {k ∈ As,n |µĝs(dk) + νTσĝs(dk) ≤ ρT }. SAFE-T
allocates the highest safe dose available, if this dose has not
been previously sampled by subgroup s. If all safe doses
have been sampled, SAFE-T selects the dose with the largest
confidence interval on ĝs(d). The priority is exploration to
new doses and reduction of uncertainty is secondary. Confi-
dence interval widths are cn(dk) = 2νTσĝs(dk). We allow a
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slight relaxation of this constraint to prevent premature stop-
ping: if Ms,n is empty, participants are assigned the lowest
dose d0. This constraint violation may occur up to Nstop
times. Thus, unless Ms,n = ∅, for dose mn, we use the se-
lection rule: mn = max (Mhn,n) if max (Mhn,n) /∈ Bhn,n,
and mn = argmaxk∈Mhn,n

cn(dk) otherwise.

During trial: Safe optimization stage. In the second
stage, SAFE-T prioritizes optimization of participant ef-
ficacy, while still ensuring safety. The safe set Ms,n is
constructed as previously defined. From Ms,n, SAFE-T
selects a dose based on optimization of an acquisition func-
tion ACQUIS.f̂s(d) on the dose-efficacy model. For ex-
ample, we may adopt the upper confidence bound (UCB)
paradigm (Auer, 2003) for optimistic exploration, where
ACQUIS.f̂s(d) = µf̂s

(d) + νEσf̂s
(d) for some hyperpa-

rameter νE . We may also use the expected improvement
(EI) criterion, where ACQUIS.f̂s(d) = EIf̂s(d) (as defined
in Jones et al. (1998)). We also propose optimization directly
over participant utility, where the dose with the maximum
estimated Thall utility given the UCB on toxicity (conserva-
tive with respect to safety) and the UCB on efficacy (opti-
mistic with respect to efficacy) is selected: ACQUIS.f̂s(d) =
U(µf̂s

(d) + νEσf̂s
(d), µĝs(d) + νTσĝs(d)).

After trial: Final dose recommendation. At trial con-
clusion, SAFE-T recommends a dose for each subgroup
using the final posteriors on the GP toxicity and efficacy
functions. The safe dose set Ms,final includes all doses al-
located during the trial that satisfy the safety constraint,
Eqn. 1. The final recommended dose for each subgroup
has the maximum utility out of the safe dose set: ms,final =
argmaxk∈Ms,final

U(p̂s(dk), ĝs(dk)).

4. Theoretical Results
Theorem 4.1 defines a lower bound on the number of initial
safe doses N0 to ensure success of SAFE-T, and Theorem 4.2
shows that SAFE-T guarantees safety with high probability.
Full proofs are shown in Appendix B.2.

Theorem 4.1. Let φ be the standard normal probability
density function, σ2

g the maximum variance of the GP prior
on any of the latent toxicity functions gs, νT > 0, and ρT =
Φ−1(τT ). Assume that the GP prior is stationary. Let ĝs(d)
be the posterior conditioned on N0 initial safe dosages and
possibly more dosages. Approximate this posterior ĝs(d)
with the Laplace approximation. Under this approximation,
if there exists a dose d that satisfies safety constraint in
Equation 1, then N0 is lower bounded as follows:

N0 ≥
(
2φ(

1

2
(1 + ρT −

√
(ρT − 1)2 + 4νTσg))

)−1

×min
( νT√

3σg

− ρT
σ2
g

,
1

σ2
g

√
ρ2T
4

+
σgνT√

3
− ρT

2σ2
g

)
.

We provide a lower bound for N0, which means that SAFE-T
requires initialization with at least N0 safe samples. How-
ever, providing N0 safe samples does not guarantee that the
safe set will be non-empty. The bound is useful as a guide
for implementation; we determine the minimum number of
trial participants to assign to the lowest dose and conduct
simulation studies to tune this hyperparameter in practice.
Theorem 4.2. Suppose that the true latent toxicity functions
g1:S are indeed drawn from the prior model assumed in
SAFE-T. In SAFE-T, assume that the posteriors ĝs can be
accurately approximated with Gaussian distributions. If
SAFE-T does not early stop, then all allocated doses are
approximately safe with probability at least 1− δT :

Pr(Φ(gs1(dm1
))) ≤ τT , . . . ,Φ(gsN (dmN

))) ≤ τT ) ⪆ 1− δT .

The approximation quality in the inequality depends on the
quality of the Gaussian approximation of the posteriors ĝs.

Under Theorem 4.2, if SAFE-T is initialized with a non-
empty safe set of doses, all participants are assigned a safe
dose with high probability. This is safeguarded by an early
stopping constraint, which ends the trial if the safety con-
straint is violated more than Nstop times.

Discussion. Assumptions made in both theorems are stan-
dard in the literature (Schreiter et al., 2015; Sui et al., 2015;
2018; Srinivas et al., 2009; Chowdhury & Gopalan, 2017).
See App. B.1 for a detailed discussion. GP-UCB (Srinivas
et al., 2009; Chowdhury & Gopalan, 2017) and EI (Wang &
de Freitas, 2014), which can be used as Bayesian acquisition
functions in SAFE-T, have proven finite-time regret bounds
and confidence interval guarantees that have been used for
regret bounds in related works (Sui et al., 2015; 2018). For
both methods, theoretical results are predicated on assump-
tions that are not applicable in our problem setting: (1)
the true reward obeys an additive noise model, and (2) the
posteriors are Gaussian processes (roughly). Future work
may explore a regret bound with respect to GP classification
given Bernoulli-distributed outcomes.

5. Experimental Results
We evaluate SAFE-T on a thorough set of synthetic scenarios
(Sec. 5.1), differing subgroup distributions (Sec. 5.2), and
sample size variations (Sec. 5.3). In Sec. 5.4, we apply
SAFE-T to a new adaptive setting, demonstrating possible
future extensions. The same GP hyperparameters are used
in SAFE-T toxicity and efficacy MOGPs across all scenarios
and experiments, demonstrating that SAFE-T is performant
with minimal prior assumptions and in the presence of mis-
specification (scenarios are not generated from GPs). In
the experiments, we use the EI acquisition function, but
provide a comparison with UCB and utility optimization,
finding negligible performance differences (Appendix E).
Implementation details in Appendix D.1.
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Figure 2: SAFE-T (■) consistently outperforms 3+3 (♦), CRM (▲), and C3T (●) with (a) lowest or comparable dose error in
16/18 scenarios, (b) fewest or comparable safety constraint violations in 16/18 scenarios, and (c) highest or comparable
participant utility in 17/18 scenarios. Shapes represent the metric mean across the 2 subgroups, while line caps represent
the metric for each subgroup. Wide intervals indicate a large disparity in subgroup performance, indicating inequity.

SAFE-T involves several distinct components; in order to es-
tablish the necessity of each component, we conduct experi-
ments with variations of SAFE-T where isolated components
are not included. Our results (Appendix E) show that all
aspects of SAFE-T (the multi-output GP models, expansion
stage, safety constraint, final dose recommendation using
Thall utility) are necessary for the highest performing result.

Synthetic scenarios. It is not possible to know ground
truth dose-response mechanisms. These can only be hy-
pothesized from clinical trials findings; however, publicly
accessible clinical trials data are reported as summary statis-
tics, with no individual-level data on treatments, outcomes,
health characteristics, and demographics. Trials that use
model-based methods report parametric models trained with
patient outcomes (Wheeler et al., 2019) and therefore rely
on the untestable assumption that the ground truth is well-
specified by the selected parametric model. Additionally,
the assumptions that justify commonly used parametric mod-
els (such as monotonicity) are likely violated by new classes
of drugs (Wages et al., 2018; Zhang et al., 2006).

Therefore, we evaluate SAFE-T on a comprehensive set of
18 synthetic scenarios that capture differing dose-response
profiles, realistic variations across subgroups, different toxi-
city and efficacy thresholds, and possible edge cases (such
as a scenario where all doses are unsafe). These are con-
structed based on careful examination of the relevant clinical
trials literature on possible dose-response models (Wages
et al., 2018), hypotheses regarding newly innovated treat-
ments (Kurzrock et al., 2021; Chiuzan et al., 2017), and
reported differences in the impact of drugs on population
subgroups (Özdemir et al., 2022; Zucker & Prendergast,

2020; Harkin et al., 2001; Unger et al., 2022; Ramamoorthy
et al., 2021). See Appendix C for detailed descriptions.

The use of synthetic experiments is standard in the dose-
finding literature, both in the clinical trials field (Ivanova &
Wang, 2006; Salter et al., 2015; Morita et al., 2017; Chapple
& Thall, 2018) and ML field (Aziz et al., 2020; Lee et al.,
2020; Shen et al., 2020; Wang et al., 2021). We find that the
extensive and informed nature of our synthetic experiments
surpasses the completeness of those in the related works,
which all investigate fewer than 5 synthetic examples.

Baselines and evaluation metrics. We evaluate perfor-
mance on three metrics: final recommended dose error;
safety constraint violations, which occur when an allocated
dose has a true toxicity probability greater than the toxicity
threshold; and participant utility, assessed post-hoc with the
Thall utility of the allocated dose. All metrics are reported
averaged over 100 experimental trials, with safety violations
and utility also averaged over the number of participants.
We compare SAFE-T to standard dose-finding procedures:
the rule-based 3+3 method, and the Bayesian continual re-
assessment method (CRM). These methods do not explicitly
consider participant heterogeneity (nor do they claim to), but
are standard practice. We also compare SAFE-T to the C3T
algorithm proposed by Lee et al. (2020), which is the only
algorithm we were able to identify in the ML literature that
aims to allocate doses optimally with respect to heteroge-
neous participants. We were not able to identify algorithms
in the GP safe exploration space that matched our problem
setting (Bernoulli-distributed safety and reward outcomes).
CRM and C3T both use a logistic model (O’Quigley et al.,
1990) for dose-toxicity. See App. D.2 for further details.
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5.1. Performance across synthetic scenarios

For all scenarios, we define a population of N = 51, with
N0 = 3 and N1 = 15, with 2 subgroups arriving at probabil-
ities π = [0.5, 0.5]. As seen in Figure 2, SAFE-T(■) consis-
tently outperforms baselines for all metrics, exhibiting either
lower or comparable final recommended dose error across
scenarios. The performance of CRM (▲) is quite poor, par-
ticularly in final dose recommendation accuracy, with large
disparities between subgroups. SAFE-T results in compara-
tively fewer safety constraint violations, with the rule-based
3+3 (♦) method (App. D.2) outperforming in some scenar-
ios. 3+3 is strict with respect to safety, but can consequently
be inefficient due to unnecessary early stopping; we see that
it performs generally poorly in accuracy and utility. On
balance, SAFE-T is preferable, as safety is still maintained
very well, while accuracy and utility are vastly improved.
We also highlight the result in scenario 16, which defines an
edge case where no doses are considered safe. The impact of
our early stopping safeguard is seen here; because SAFE-T
terminates, the remaining participants do not receive the un-
safe doses, resulting in fewer safety violations. We see the
smallest differences in utility across algorithms; however,
SAFE-T maintains slightly higher overall utility.

5.2. Impact of subgroup ratios

We desire a dose allocation procedure that performs effec-
tively with heterogeneous participants, particularly when
subgroups are unevenly distributed. In Fig. 3, we report
performance on safety constraint violations given variations
in the subgroup distribution for scenario 11. In scenario
11, dose-toxicity is monotonically increasing, where sub-
group 0 experiences higher probability of toxicity at each
dose in comparison to subgroup 1. Dose-efficacy, which is
the same for both subgroups, is monotonically increasing
and plateauing. This scenario exhibits one key difference
between subgroups: toxicity. As such, we expect wider
variations in the safety constraint violation metric across
subgroups for more skewed subgroup distributions. In this
setting, we have N = 201 participants and 2 subgroups, we
vary the arrival probability of subgroups such that the arrival
probability of subgroup 0, π0, ranges from [0.15, 0.9] with
step size 0.5, where π0 + π1 = 1.

SAFE-T demonstrates a consistently low rate of safety viola-
tions across varying subgroup ratios. It effectively maintains
a uniformly low level of safety while ensuring comparable
safety outcomes across subgroups. This demonstrates the
method’s relative fairness and its efficacy in addressing
participant heterogeneity. In contrast, both 3+3 and CRM
exhibit large differences in safety between subgroups, where
both result in fewer safety violations for subgroup 1, which
experiences a lower rate of toxicity across dose, but a com-
paratively high proportion of safety violations for subgroup
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Figure 3: The x-axis shows the proportion of the population
from subgroup 0. Solid lines ( ) are subgroup 0, dashed
( ) subgroup 1. SAFE-T (red) maintains a consistently low
rate of safety violations across subgroups. 3+3 (blue) and
CRM (orange) exhibit large disparities. C3T (green) shows
larger disparity in safety when subgroup 0 ratio is small.

0, which experiences a higher rate of toxicity. This demon-
strates the problematic nature of these standard methods;
subgroup variations would not be known before a trial and
these methods result in detrimental impacts on subgroups
that may experience higher toxicity for the same dosage
levels, such as women (Unger et al., 2022). C3T main-
tains safety with slightly better performance; however, C3T
allocates notably more unsafe doses to subgroup 0 when
there are few participants from subgroup 0, which would
exacerbate health disparities. In App. E, we report the final
dose error and utility results over subgroup ratios, as well as
results for the same experiment with smaller N (Fig. 11).

5.3. Impact of sample size

We examine performance on scenario 9 over sample sizes
from N = 51 to N = 537, with 100 trials of each method
every 9 steps. We select scn. 9 as it is a simple scenario
with one main complication: plateauing efficacy. Subgroup
0 experiences slightly higher toxicity across doses, efficacy
is the same across subgroups. We expect methods to im-
prove on final dose error with increasing sample sizes, as
model accuracy improves. However, 3+3 and C3T do not
improve with increasing sample sizes, highlighting their
ineffectiveness in the presence of misspecification. 3+3
selects the largest safe dose, but when efficacy plateaus, the
highest safe dose is not the most effective. C3T selects the
estimated most effective safe dose, without considering a
utility tradeoff; it does not recognize that a very slightly
higher efficacy (as efficacy plateaus) is not worth the higher
toxicity of a larger dose. In contrast, SAFE-T shows con-
sistently decreasing dose error with increasing sample size;
if practitioners wish to improve final dose accuracy, they
may recruit a larger trial cohort. We do not include the time-
intensive CRM in this experiment due to lack of sufficient
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resources, but note its overall poor performance. In App. E,
we report safety and utility results over sample sizes.
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Figure 4: SAFE-T (red) improves final dose error over in-
creasing sample sizes for subgroups 0 ( ) and 1 ( ) in
contrast with 3+3 (blue) and C3T (green).

5.4. Learning efficient dose allocations

In a standard dose-finding trial, investigators typically spec-
ify a discrete set of 2 to 12 doses (Wheeler et al., 2019).
This set remains unchanged, even in adaptive settings (with
the exception of unsafe doses being removed). However,
the true optimal dose may exist outside of this discrete set.
SAFE-T can be extended to recommend doses on a contin-
uous scale. Here, SAFE-T expands the available range of
doses based on a specified dosage increase interval. A safe
dose range is identified based on the same safety constraint.
During the efficacy optimization phase, the optimal point is
determined across the safe dose range, rather than a discrete
set, allowing for more complete exploration. As in Sec. 5.1,
N = 51, N0 = 3, and N1 = 15, with 2 subgroups arriving
at π = [0.5, 0.5]. The dosage increase interval is 3.0.

In Table 1, we report the performance of SAFE-T on 4 con-
tinuous scenarios (App. C). We report the error between the
recommend dose and the true optimal (based on Thall util-
ity) given the true underlying toxicity and efficacy curves),
finding that SAFE-T performs extraordinarily well, with ob-
jectively small differences in final dose error in Scns. C.1,
C.3, and C.4, where the algorithm tends to slightly under-
estimate the optimal dose (prioritizing safety). We notice
slightly worse error in Scn. C.2, where the efficacy curves
are strictly monotonically increasing and the optimal dose is
relatively high in the provided dose range. This error results
from the algorithm behaving conservatively (note that the
signed error value is negative), a desirable trait.

6. Conclusion
We propose SAFE-T, an adaptive dose-finding procedure that
optimizes for participant benefit and addresses response het-
erogeneity, while also ensuring participant safety and dose
recommendation accuracy. SAFE-T performs effectively

Table 1: Optimized continuous dose allocations results

Scn. Dose Range Subgroup 0 Subgroup 1

Safety Violations

C.1 2.5− 15 0.24± 0.00 0.00± 0.19
C.2 2.5− 40 0.00± 0.00 0.00± 0.00
C.3 2.5− 20 0.06± 0.02 0.02± 0.04
C.4 0.05− 15 0.21± 0.18 0.26± 0.22

Final Dose Error

C.1 2.5− 15 −0.19± 2.60 1.34± 4.23
C.2 2.5− 40 −4.48± 8.29 −10.75± 12.11
C.3 2.5− 20 −0.08± 2.77 −0.02± 2.66
C.4 0.05− 15 −0.22± 3.96 −0.31± 2.29

within the realistic context of a dose-finding trial, working
well with small sample sizes and under misspecification. We
present theoretical guarantees for the probability of safety
over trial participants. Through extensive synthetic experi-
ments, we demonstrate that SAFE-T outperforms baseline
methods in final dose recommendation accuracy, partici-
pant safety, and participant utility. SAFE-T also maintains
consistent performance across variations in subgroup distri-
bution and improves steadily with increasing sample size.
We demonstrate SAFE-T’s high performance in a novel con-
tinuous setting where the algorithm is not restricted to a
discrete set of doses, a promising venue for future work.

There are several limitations to our work. SAFE-T is
tailored to the standard setup of an early-phase dose-finding
trials, where binary outcomes for toxicity and efficacy are
considered. However, crucial information is lost in this
setting; future work may focus on dose-finding methods
that consider more complex scenarios, such as continuous
outcomes, delayed outcomes, multiple outcomes, and
missing data (i.e. due to patient dropout). As clinical trials
practitioners are hesitant to adopt unproven methods, new
research should emphasize safety and robustness of findings.
SAFE-T is applicable when participant heterogeneity can
be hypothesized pre-trial, making it useful for exploring
demographic inequities. However, heterogeneous with re-
spect to latent characteristics that are not easily identifiable
at the outset of a trial; future work may incorporate learned
subgroups into the dose-finding procedure (Thomas et al.,
2018). From a practical standpoint, GPs are more complex
than standard statistical methods, which would be a barrier
to uptake in practice. This setting has also raised interesting
questions with respect to GP classification. We have not
been able to identify literature that provides theoretical
guarantees on confidence bounds and regret for GP
classification, likely due to the analytically intractable GP
posterior, making this an interesting venue for fundamental
research. While we make a first step towards mitigating
inequity in dose-finding trials, further research that actively
challenges structural sources of inequality is required.
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Impact Statement
In this work, we seek to address health inequities that arise
from flaws in commonly used methodology in early phase
dose-finding clinical trials. While we discuss several con-
cerns, design choices, and limitations of our work in the
body of the paper, there are additional ethical issues we can
elaborate on: (1) potential sources of algorithmic bias and
(2) our approach to fairness considerations. In addition, we
discuss possible future societal consequences.

(1) Potential sources of algorithmic bias: Researchers in
ethical machine learning for healthcare are typically con-
cerned with algorithms that may unintentionally codify exist-
ing structural and individual biases through biased training
data. Data generated from clinical practice can reflect harm-
ful biases (such as the issue of physician biases impacting
treatment of pain for Black patients). However, we note that
SAFE-T is not an algorithm for use in clinical practice; it
is specifically for dose-finding clinical trials, where doses
are allocated in accordance with strictly pre-defined proce-
dures and patient outcomes are evaluated against strictly
defined guidelines (typically involving objective health mea-
surements). While such clinical procedures were developed
to prevent confounding in clinical findings, by design they
help mitigate biases that may stem from human evaluation
of patient outcomes. SAFE-T is only trained with the pa-
tient outcomes data collected during a trial. As such, our
primary concern would be to ensure that all trial protocols
are properly followed, particularly any blinding practices
that would mitigate practitioner biases. For success of SAFE-
T (as well as any dose-finding trial method), standardized
patient outcome assessment is thus particularly important.

(2) Our approach to fairness considerations: In our work,
we do not utilize explicit fairness constraints or objectives
in the pursuit of health equity. Instead, we identify a clear
source of unfairness (unaddressed patient heterogeneity)
and develop our method specifically to address this concern.
We also ensure that our design prioritize participant safety
and utility and also take care to provide thorough empir-
ical experiments on realistic scenarios to properly assess
robustness and flexibility.

We value fairness considerations very highly in our work;
however, fairness considerations are context-dependent. In
many healthcare contexts, fairness considerations would
not be resolved with standard fairness constraints (such

as demographic parity). In particular, the purpose of our
work is to address a concerning health inequity: that certain
population subgroups may experience greater risks of ad-
verse drug effects due to flaws in the current methodology
of dose-finding trials. As discussed in our paper, standard
dose-finding trial methods assume that the patient popula-
tion is homogeneous, not accounting for possible variations
in drug toxicity and efficacy due to patient heterogeneity.
This issue, in conjunction with existing inequalities in sub-
ject selection for clinical trials, may lead to both disparities
in patient utility during the trial (from sub-optimal dose
allocation) and after the trial (from non-representative dose
recommendations). The way that we tackle inequity in this
case is through proper consideration of heterogeneous pa-
tient populations, rather than standard fairness constraints.
In addition, we examine subgroup disparities in careful ex-
perimental evaluation, finding that SAFE-T improves both
performance (safety, accuracy, utility, Section 5.1) for pa-
tients and also reduces disparities between subgroups (even
when subgroup ratios vary, Section 5.2).

As an example: We may have a dose-finding trial examining
a drug that is more toxic for women than men at the same
dose (which is likely: (Zucker & Prendergast, 2020; Unger
et al., 2022)). Women are historically under-represented
in clinical trials, particularly in early-phase dose-finding
trials (Chien et al., 2022; Steinberg et al., 2021). If dose
allocation decisions during the trial are made based on (1)
data from the trial, which includes mostly men, and (2) as-
sumptions that the trial population is homogeneous, women
are more likely to be allocated unsafe doses. On top of that,
the ‘optimal’ recommended dose based on trial findings
may be optimal for men, but not for women. To mitigate
this issue (and similar issues), we require a method that can
account for patient heterogeneity.

Societal consequences. Our algorithm is a small contri-
bution towards mitigation of health disparities caused by
widely-used dose-finding trial methods. However, we ac-
knowledge that the field is complex and subject to many
issues that are not simply fixable with new methods. For
example, trial practitioners must be willing to adopt new
methods and also require the expertise to use any new meth-
ods. New methods may also be met with skepticism during
trial approval processes, although adaptive designs are in-
creasingly being adopted (Wheeler et al., 2019). In addition,
as stated in the Conclusion, the dose-finding problem setting
we investigate is restricted to a basic form, where binary
toxicity and efficacy outcomes are considered. While this
is the structure that standard trials assume, it is simplified
from reality; this simplification leads to information loss
and does not consider more complex circumstances, such
as missing data or multiple target outcomes. We hope that
this work brings attention to an interesting problem area
that can benefit from greater, careful attention from the ML
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community.
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A. Definition of Utility

(a) Dose-toxicity (b) Dose-efficacy

(c) Utility tradeoff curve (d) Dose-utility

Figure 5: We illustrate the impact of selecting different midpoint values to define the toxicity-efficacy tradeoff curve in a
scenario with two subgroups (subgroup 0 in blue, subgroup 1 in orange). For a midpoint of (0.3, 0.3), the utility trade-off
(c) and subsequent dose-utility values (d) are shown in solid lines, and the resultant optimal dose is shown as •. For a
midpoint of (0.5, 0.2), the curves are shown as dashed lines, and the resultant optimal dose is marked as an ✖. The midpoint
(0.3, 0.3) results in a steeper curve, indicting that proximity to either the toxicity or efficacy thresholds are heavily penalized.
The midpoint (0.5, 0.2) results in a much flatter curve, indicating that incremental increases in probability of toxicity are
acceptable given improvements in the probability of efficacy.

The parameter p is determined by setting the utility to 0 and plugging in a midpoint, (p∗E , p
∗
T ), elicited from practitioners,

that defines the curvature of the contour:

1 =

((
p∗T
τT

)p

+

(
1− p∗E
1− τE

)p) 1
p

(3)

Figure 5 shows the impact of the choice of midpoint on the resulting utility trade-off curve and subsequent dose-utility values.
Doses that lie on the utility contour (c) are considered to have 0 utility, while doses below the contour have positive utility.
A utility of geq0 indicates a desirable tradeoff. We notice the manifestation of the defined trade-off in two dimensions: by
subgroup (blue or orange) or by choice of midpoint (solid line with •, or dashed line with ✖). We refer to the midpoint at
(0.3, 0.3) as •, leading to a steeper trade-off curve; we refer to the midpoint at (0.5, 0.2) as ✖, leading to a flatter trade-off
curve. When • is used, we notice that the optimal dose for subgroup 0 (blue) is lower than that of subgroup 1 (orange). This
makes intuitive sense: while both subgroups maintain the same dose-toxicity curve, subgroup 0 experiences much higher
efficacy at the same doses. Thus, subgroup 0 is capable of experiencing an acceptably high efficacy at a lower toxicity than
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subgroup 1. When ✖ is used, the optimal dose for subgroup 0 (blue) increases because proximity to the toxicity threshold is
not penalized as much. Therefore, a greater increase in toxicity is acceptable given and increase in efficacy. We note that if
✖ is used to define the utility contour, it is not possible for subgroup 1 (orange) to receive doses that have positive utility.
Clinical trial practitioners may select a midpoint consistent with the levels of risk they are willing to condone in the trial.

B. Further theoretical details
B.1. Assumptions

While the assumptions required for Theorems 4.1 and 4.2 can be considered strong, they are also standard in the literature.
Theorem 4.1 is predicated on the assumption that we have access to d0, a known safe dose. The safety bounds in related
works by Sui et al. (2015, Theorem 1) and Sui et al. (2018, Theorem 1) rely on the assumption of access to an initial safe set
that “contains at least one safe decision” which may be unrealistic in practice. In contrast, while we assume knowledge of a
safe d0, we also include an early stopping constraint Nstop in our algorithm as a practical safeguard if the initial set does not
include a truly safe point.

Theorem 4.2 is predicated on the assumption that the true latent function is indeed drawn from the given GP prior. Samples
of Gaussian processes have a certain level of smoothness, determined by the kernel. For example, see Kolmogorov’s
continuity theorem: if f is α-Hölder continuous w.r.t. the Lp−norm, then samples are almost surely (α − 1

p )-Hölder
continuous. Therefore, assuming that the latent function is distributed according to a GP implies certain assumptions
about the smoothness of the underlying function. In our particular implementation, we use the radial basis function (RBF)
kernel. This kernel is noted as “probably the most widely-used kernel within the kernel machines field” and is “infinitely
differentiable, which means that the GP with this covariance function has mean square derivatives of all orders, and is thus
very smooth” (Rasmussen & Williams, 2003).

While this assumption that the latent function is drawn from the GP prior can be considered strong, it is standard in the
literature (e.g. Srinivas et al. (2009, Theorem 1)). Such a theoretical result lays the groundwork for future work to generalize
to slightly weaker assumptions, namely the “agnostic setting” defined in Srinivas et al. (2009, Theorem 3) and further
adopted by Chowdhury & Gopalan (2017, Theorem 3), Sui et al. (2015, Theorem 1), and Sui et al. (2018, Theorem 1). The
”agnostic setting” rests on the assumption that the underlying function is distributed according to a GP to the assumption
that the underlying function is bounded in the RKHS norm of the selected GP kernel. This generalization can directly be
interpreted as a smoothness assumption. The results derived in this agnostic setting rely critically on the observed data
being drawn from a model with Gaussian additive noise. In contrast, the data in our setting is Bernoulli-distributed, so the
proof techniques behind Srinivas et al. (2009, Theorem 3) and Chowdhury & Gopalan (2017, Theorem 3) cannot be used to
generalize our results to the agnostic setting. We plan to generalize our results to the agnostic setting in future work (note
that this requires extensive novel theoretical research).

Because the Bernoulli likelihood results in an analytically intractable posterior, we perform a Gaussian approximation over
f (Nickisch & Rasmussen, 2008), as in related works (Houlsby et al., 2011; Schreiter et al., 2015; Bottero et al., 2022). We
define precisely where the approximation error occurs in the proof of Theorem 4.2 in Appendix B.2.

While we provide theoretical safety bounds to illustrate the correctness of our algorithm, we note that these assumptions
may not be exactly satisfied in practice. As such, we took care to highlight these assumptions clearly and define safeguards
in our algorithm to minimize implementation risks.

B.2. Proofs

In this section, we provide the full proofs for Theorem 4.1, the lower bound on the number of initial safe samples N0 that
guarantees that SAFE-T succeeds, and Theorem 4.2, a safety guarantee on SAFE-T. While Theorem 1 is a generalization of
Theorem 2 by Schreiter et al. (2015) and Theorem 2 is similar to Theorem 3 by Schreiter et al. (2015), there are notable
differences due to our differing safety constraint (Equation 1). Our proof strategy follows that by Schreiter et al. (2015),
again with notable differences due to the differing safety constraint, and the lemmas that we present are similar to the
lemmas presented by Schreiter et al. (2015).

To achieve the result in Theorem 1, we assume that we have N0 initial safe points satisfying the safety constraint (Equation 1).
These safe points correspond to negative labels, as positive labels indicate toxicity. Theorem 1 assumes that the underlying
Gaussian processes uses a stationary covariance function, so a repeated sample of the same safe initial dose, d0, maximally
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decreases the mean and variance of the approximated posterior. This allows us to define the mean, µN0
, and variance, σ2

N0
,

of the posterior after N0 samples as in Lemma 1. In Lemma 2, we provide an upper bound on µN0 using the results of
Lemma 1. In Lemma 3, we lower bound N0 with respect to µN0 . Combining the results of Lemma 2 and Lemma 3, we
prove the bound presented in Theorem 1.

To achieve the result in Theorem 2, we first define the probability of selecting an unsafe dose given the safety constraint (1),
then use the union bound to determine the probability of safety over all allocated doses.

Lemma B.1 (Lemma 2 by Schreiter et al. (2015)). Assume the setting of Theorem 4.1. Let ĝs(d) be the posterior latent
toxicity function conditioned on N0 samples of the same safe initial dosage d0. Under a Laplace approximation of this
posterior, the mean and variance at d0 satisfy

µN0
= −N0σ

2
gqN0

and σ2
N0

=
σ2
g

1 +N0σ2
gwN0

(4)

where

qN0
=

φ(−µN0
)

Φ(−µN0
)

and wN0
= q2N0

− µN0
qN0

(5)

and σ2
g is the maximum variance of the GP prior on any of the latent toxicity functions gs.

Proof. The proof follows the proof of Lemma 2 by Schreiter et al. (2015).

Let Y = −1 be a vector of N0 negative labels. Using the Laplace approximation (Williams & Barber, 1998), we approximate
our non-Gaussian posterior ĝs(d0) with a Gaussian N (µN0

, σ2
N0

) where

µN0
= argmax

g
p(g | Y , d0) (6)

and

σ2
N0

= (w + σ−2
g )−1, w = − ∂2

∂g2
log p(Y | g, d0)

∣∣∣∣
g=µN0

. (7)

Here the likelihood of our classification model is given by

p(Y | g, d0) =
N0∏
n=1

Φ(Yng(d0)) = Φ(−g(d0))
N0 . (8)

From the Laplace approximation, it follows that

µN0
= σ2

g

∂

∂g
log p(Y | g, d0)

∣∣∣∣
g=µN0

= −N0σ
2
gqN0

(9)

where qN0
is defined in the lemma statement. In addition, we compute

− ∂2

∂g2
log p(Y | g, d0)

∣∣∣∣
g=µN0

= N0
∂

∂g

ϕ(−g)

Φ(−g)

∣∣∣∣
g=µN0

(10)

= N0

(
−g

ϕ(−g)

Φ(−g)
+

ϕ2(−g)

Φ2(−g)

)∣∣∣∣
g=µN0

(11)

= N0(q
2
N0

− µN0
qN0

) = N0wN0
(12)

where wN0
is defined in the lemma statement. Therefore,

σ2
N0

=
1

N0wN0
+ σ−2

g

=
σ2
g

1 +N0σ2
gwN0

. (13)
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Lemma B.2. Assume the setting of Theorem 4.1. Given N0 samples of the same safe initial point d0, if the the safety
constraint (1) is satisfied, then the Laplace approximation of the posterior mean of the latent toxicity function must be upper
bounded as follows:

µN0
≤ 1

2
(1 + ρT −

√
(p− 1)2 + 4νTσg) (14)

where µN0
and σg are defined as in Lemma B.1, νT > 0, and ρT = Φ−1(τT ).

Proof. With the definitions of posterior mean and variance from Lemma B.1, we can rewrite the safety constraint (Equation 1)
as follows:

ρT − µN0
≥ νTσg√

1− qN0
µN0

+ µ2
N0

. (15)

By bounds on the inverse Mill ratio (Boyd, 1959), we have that qN0 ∈ [0, 1]. Therefore, also using that µN0 < 0 (see the
definition of µN0

in Lemma 1),

1− qN0
µN0

+ µ2
N0

≤ 1− 2µN0
+ µ2

N0
= (1− µN0

)2, (16)

so, noting that 1− µN0
> 0,

ρT − µN0 ≥ νTσg

1− µN0

. (17)

Then multiply with 1− µN0
> 0 on both sides to find

(ρT − µN0)(1− µN0) = µ2
N0

− (ρT + 1)µ+ ρT ≥ νTσg ⇐⇒ µ2
N0

− (ρT + 1)µ+ ρT − νTσg ≥ 0. (18)

The discriminant of this quadratic formula is equal to

disc = (ρT + 1)2 − 4(ρT − νTσg) = (ρT − 1)2 + 4νTσg > (ρT − 1)2 ≥ 0. (19)

Since this discriminant is strictly positive and the parabola in (18) is upwards (leading coefficient is positive), we have
µN0

≤ µ− or µN0
≥ µ+ where

µ± = 1
2 ((ρT + 1)±

√
disc). (20)

The safety constraint requires that ρT − µN0 ≥ νTσN0 ≥ 0. Since

ρT − µ± = 1
2 ((ρT − 1)∓

√
disc) (21)

and
√
disc > |ρT − 1|, we find

ρT − µ+ = 1
2 ((ρT − 1)−

√
disc) < 0. (22)

This means that µN0 ≥ µ+ implies that ρT − µN0 ≤ ρT − µ+ < 0. Therefore, µN0 ≥ µ+ cannot be true, which means that
µN0

≤ µ− must be true.

Lemma B.3. Assume the setting of Theorem 4.1. If the safety constraint in Equation 1 is satisfied for some dose d, then N0

must be lower bounded as follows:

N0 ≥ (2φ(µN0))
−1 min

( νT√
3σg

− ρT
σ2
g

,
1

σ2
g

√
ρ2T
4

+
σgνT√

3
− ρT

2σ2
g

)
. (23)

Proof. Like in Lemma B.2, with the definitions of posterior mean and variance from Lemma B.1, we can rewrite the safety
constraint (Equation 1) as follows:

−µN0 = qN0σ
2
gN0 ≥ −ρT +

νTσg√
1− qN0µN0 + µ2

N0

. (24)

From Lemma B.1, we know that µN0 < 0. We consider the cases µN0 ∈ (−∞,−1] and µN0 ∈ (−1, 0) separately.
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On the one hand, suppose that µN0
∈ (−1, 0). Then, recalling that qN0

∈ [0, 1] (Boyd, 1959),

1− qN0
µN0

+ µ2
N0

≤ 1 + 1 + 1 = 3, (25)

so

qN0
σ2
gN0 ≥ −ρT +

νTσg√
3

=⇒ N0 ≥ 1

qN0

(
−ρT
σ2
g

+
νT√
3σg

)
=

1

qN0

(
νT√
3σg

− ρT
σ2
g

)
. (26)

On the other hand, suppose that µN0
∈ (−∞,−1]. Then

1− qN0
µN0

+ µ2
N0

≤ µ2
N0

+ µ2
N0

+ µ2
N0

= 3µ2
N0

, (27)

so
qN0σ

2
gN0 ≥ −ρT +

νTσg√
3|µN0

|
= −ρT +

νT√
3qN0

σgN0

. (28)

Rearrange this inequality as follows:

qN0
σ2
gN

2
0 + ρTN0 +

νT√
3qN0

σg

≥ 0. (29)

The discriminant of this quadratic formula is equal to

disc = ρ2T + 4qN0
σ2
g

νT√
3qN0σg

= ρ2T +
4σgνT√

3
> ρ2T ≥ 0. (30)

Since this discriminant is strictly positive and the parabola in (29) is upwards (leading coefficient is positive), we have
N0 ≤ N− or N0 ≥ N+ where

N± =
1

2qN0
σ2
g

(−ρT ±
√
disc). (31)

Using that N0 must be positive, we find that

N0 ≥ 1

2qN0
σ2
g

(
−ρT +

√
ρ2T +

4σgνT√
3

)
=

1

qN0

(
1

σ2
g

√
ρ2T
4

+
σgνT√

3
− ρT

2σ2
g

)
. (32)

Putting together the two cases:

N0 ≥ 1

qN0

min

(
νT√
3σg

− ρT
σ2
g

,
1

σ2
g

√
ρ2T
4

+
σgνT√

3
− ρT

2σ2
g

)
. (33)

Finally, using that −µN0
> 0, so Φ(−µN0

) ≥ 1
2 ,

1

qN0

=
Φ(−µN0

)

φ(−µN0)
≥ 1

2φ(−µN0)
, (34)

which gives the equation from the lemma statement.

These lead us to our result in Theorem 1.

Proof (Theorem 4.1). Using the lower bound of N0 as defined in Lemma 3 in combination with the upper bound condition
on µN0

given in Lemma 2, we obtain the result of Theorem 1.
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Proof (Theorem 4.2). Recall that SAFE-T sets νT = Φ−1(1 − δT
N−N0

). At each time point n, if we select a dose dn that
fulfills the safety constraint (1), the probability that the dose is unsafe is as follows:

Pr(Φ(gsn(dn)) > τT ) = Pr(gsn(dn) > Φ−1(τT ))

≤ Pr(gsn(dn) > µĝsn
(dn) + νTσĝsn

(dn))

= Pr

(
gsn(dn)− µĝsn

(dn)

σĝsn
(dn)

> νT

)
= EY1:(n−1)

[
Pr

(
gsn(dn)− µĝsn

(dn)

σĝsn
(dn)

> νT

∣∣∣∣Y1:(n−1)

)]
≈ EY1:(n−1)

[
1− Φ−1(νT )

]
=

δT
N −N0

where the quality of the approximate equality depends on how well the distribution of ĝs(dn) can be approximated with a
Gaussian distribution. Using the union bound, we then find that

Pr
( N⋃
n=N0+1

{Φ(gsn(dn)) > τT }
)
≤

N∑
n=N0+1

Pr(Φ(gsn(dn)) > τT ) ≈ (N −N0)

(
δT

N −N0

)
= δT .

Thus, selected doses dN0:N are approximately safe with at least probability at least 1− δT .

B.3. Distinction from related works

While our theoretical bounds are motivated by Schreiter et al. (2015), there are key differences. Our safety constraint
(Equation 1) differs from the one defined in Schreiter et al. (2015, Equation 13). Our constraint (Equation 1) allows a variable
practitioner-specified toxicity probability threshold ρT , while Schreiter et al. (2015, Equation 13) fixes the constraint ρT at
0. Their simplification allows them to approach the derivation of their theoretical bounds Schreiter et al. (2015, Theorems
1 & 2) differently. Our theoretical bounds (Theorems 4.1 and 4.2 (Appendix B.2) can be considered a generalization of
this specific case proven in Schreiter et al. (2015), as ρT can be set as 0 or whatever a practitioner decides. This difference
is critical to the derivation of Theorems 4.1 and 4.2 (Appendix B.2) and involves significant technical contribution in our
proofs (Appendix B.2. The proof of Schreiter et al. (2015, Theorem 3) also requires the use of Laplace approximation for
Gaussian distributions. We approach our proof of Theorem 4.2 differently such that this requirement is not needed. In
addition, we make it explicit that there is approximation error due approximate inference for the posteriors. The proof makes
it clear where precisely this approximation comes into play: the fifth equality in the proof of Theorem 4.2 in Appendix B.2.

C. Description of Synthetic Scenarios
For our experiments in Section 5.1 we constructed 18 synthetic scenarios to represent varying dose-response shapes, toxicity
and efficacy thresholds, variations between subgroups, and possible edge cases. In Table 3 we record the characteristics
captured by each scenario. Figure 12 (displayed at the end of the Appendix) show the true toxicity, efficacy, and Thall utility
plots by scenario. The optimal doses by subgroup per scenario are selected using the Thall utility values calculated from
the true underlying toxicity and efficacy probabilities (in conjunction with the set toxicity and efficacy thresholds). If no
doses satisfy the toxicity and efficacy thresholds, then the optimal dose is no dose. We have also reviewed the optimal doses
manually and found that in all scenarios, the intuitively optimal dose matches that selected using Thall utility.

In Table 3, we use a variety of terms to describe the dose-response relationships:

• Increasing: response is generally increasing as dose increases with no obvious pattern

• Increasing (Logarithmic): response is increasing in a logarithmic shape (more slowly) as dose increases that is not
quite a plateau
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• Increasing (Exponential): response is increasing in an exponential shape as dose increases

• Plateauing: response plateaus, such that after some dose there is no (or very minimal) change in response as dose
increases

• Parabolic: response clearly peaks at some dose

• Flat: response does not change with dose

• Vertical transformation: response curve is shifted vertically, retains same shape across subgroups

• Horizontal transformation: response curve is shifted horizontally, retains same shape across subgroups

• Combined transformation: response curve is shifted and dose not retain the same shape across subgroups

Broadly, we investigate cases where there is either no subgroup variation, only efficacy variations, only toxicity variations,
or variations in both toxicity and efficacy, with differing shapes and edge cases tested throughout.

For our experiments in Section 5.4, we constructed 4 synthetic continuous scenarios to explore the most common dose-
response patterns. In Figure 13 (displayed at end of Appendix) we plot the true toxicity, efficacy, and Thall utility values by
scenario. Similarly to the discrete scenarios, the true optimal dose for the continuous scenarios is selected based on the
maximum Thall utility value.

D. Experimental Details
D.1. SAFE-T implementation details

In dose-finding trials, patients typically arrive in cohorts of size pre-determined by trial practitioners (often 3), usually based
on logistical considerations. Patients in a cohort may belong to different subgroups and all are assumed to be treated at the
same time. Models of dose-response relationships are updated after outcomes are observed from all patients in a cohort. We
follow this realistic setting in our experiments, first assigning N0 = 3 participants to the lowest dose d0 and treating all
subsequent participants in cohorts of size 3. We note that we avoid the use of an unsafe burn-in period as is done in related
works, where each dose is selected in immediate sequence (without regard for toxicity) (Lee et al., 2020; Shen et al., 2020).

SAFE-T models dose-toxicity and dose-efficacy with multi-output Gaussian process, using the linear model of co-
regionalization (LMC) (Journel & Huijbregts, 1976). The LMC model assumes that each output dimension is a linear
combination of Q learned latent functions, g(·) = [g(1)(·), . . . , g(Q)(·)]:

fs(x) =

Q∑
i=1

a(i)s g(i)(x) (35)

In our setting, each output dimension (also referred to as a task) corresponds to a subgroup. Thus, our Gaussian processes
learn subgroup representations that are composed of underlying latent functions, with s ∈ {1, . . . , S}, S = 2, and Q = 3.

Due to the small sample sizes we expect to work with, we set many of the hyperparameters of the Gaussian processes
ahead of time. While we propose hyperparameters that can be defined in order to obtain theoretical probability guarantees,
in practice we use those definitions as a starting point for fine-tuning. Our experimental hyperparameters have been
manually tuned to work with the standard value ranges of dose-finding trials. In a CRM trial, practitioners are advised
to run simulations in order to determine reasonable parameters for the trial setting. In practice, trial practitioners can
use prior knowledge and past data to inform hyperparameter tuning with simulation studies (as in our manual tuning
procedure) (Wheeler et al., 2019). Practitioners will have knowledge of the toxicity/efficacy thresholds, dose range, dosages
of interest, and hypothesized dose-response profiles. With guidance, these values can be used to construct simulated
scenarios for hyperparameter tuning: for example, dosages inform the possible kernel length-scale and toxicity/efficacy
thresholds inform GP prior means. A constant mean function and the RBF kernel have been shown in our experiments to be
compatible with various dose-response profiles and practitioners can stick with these unless they have additional expertise.
They may run simulations to semi-manually tune the hyperparameters of the GP (mean value, kernel length scale, LMC
coefficients). We believe that introducing a slightly more complex hyperparameter tuning process is worth the tradeoff
in performance and flexibility that SAFE-T offers in contrast to existing parametric methods. Oftentimes, practitioners
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use software that abstracts the particularities of the modeling procedure (Wheeler et al., 2019). We believe that it is thus
reasonable to suggest that practitioners may do the same with a method such as SAFE-T. Early phase trials are likely to have
small sample sizes, so fitting hyperparameters could lead to instability.

Hyperparameters remain the same across all 18 test scenarios for comparability, indicating that practitioners need only
general prior knowledge to determine suitable hyperparameters. We define νT = 0.2 for the safety constraint and νE = 0.2
(needed when UCB efficacy optimization is used), while the toxicity threshold (τT ) and efficacy thresholds (τE) are set
by the scenario setting. Both the toxicity and efficacy GPs use constant mean functions (we set mean = −0.3 for toxicity
and mean = −0.1 for efficacy) and the stationary radial basis function kernel (RBF kernel) as the covariance function (we
set length scale = 4 for toxicity and length scale = 2 for efficacy). We also set the matrix A, with Q rows and S columns,
which is composed of the coefficients a(i)s of the LMC model to

( 1.0 0
0.2 0.2
0 1.0

)
. These hyperparameters were manually tuned and

the high performance maintained across all 18 distinct synthetic scenarios suggests that they are applicable across variable
dose-finding settings. However, they could be further tuned for improved performance for specific settings. For example, the
length scale parameter can be informed by the range of investigated dose values, which will be known ahead of a trial.

While Theorem 4.1 assumes the use of Laplace approximation in order to approximate our GP posteriors as Gaussians, in
practice we train our MOGPs using stochastic variational inference (Hensman et al., 2014) due to ease of implementation
in GPyTorch (Gardner et al., 2018). We obtain confidence intervals by drawing 1000 samples from the GP posteriors
and calculating the 0.025 quantile (lower bound) and 0.975 quantile (upper bound). Future work can explore the impact
that different methods of approximate Bayesian inference, such as Laplace approximation, Expectation Propagation, or
variational inference, have on performance.

D.2. Baseline algorithms

In our experiments (Section 5.1), we assess the performance of SAFE-T as compared to the standard dose-finding trial
procedures of 3 + 3 (Kurzrock et al., 2021) and the continual reassessment method (CRM) (Wheeler et al., 2019), as well
as the C3T algorithm proposed in (Lee et al., 2020). Note that every metric for every experiment for every method is the
average over 100 experiment repetitions.

3+3 (Kurzrock et al., 2021) is a rule-based methodology for dose escalation. A cohort c1 of three participants are allocated
to a dose d1. If one participant in c1 experiences toxicity, the next three participants at c2 are allocated the same dose
d1. If more than two out of six participants across c1 and c2 experience toxic outcomes, d1 is considered too toxic. If no
participants in c1 experience a (previously defined) toxic outcome, the trial allocated the next highest dose d2 to another
three participant cohort, c2. The pattern repeats here; if any of c2 experiences a toxic outcome, c3 is also allocated d2. If
more than two participants in c2 and c3 experience a toxic outcome, the next cohort c4 is allocated a lower dose, d1. In
short, the dose where no more than one participant out of six experiences toxicity is considered the maximum tolerated dose
(MTD), which is then recommended for future study. This method relies on the assumption that both toxicity and efficacy
are monotonically increasing, such that the maximum tolerated dose is also the most effective. However, this assumption
may not hold for novel therapies, where efficacy may plateau or decrease with higher dosages (Wages et al., 2018; Zhang
et al., 2006).

CRM (Wheeler et al., 2019) is a model-based design for dose-finding trials. In CRM, practitioners learn a model for the
dose-toxicity relationship. Typically, a parameterized logistic model is used, such as the model proposed in O’Quigley
et al. (1990). This model is used to determine dose allocation for the next patient (or cohort of patients) as well as the
MTD to recommend for future study. CRM requires a pre-specified dose skeleton of expected toxicity probabilities. A dose
skeleton, as described in (Wheeler et al., 2019), is used to determine dose labels (the input to the parametric dose-toxicity
model) that will fit the domain of the parametric dose-toxicity model well. Typically, dose skeletons are defined manually by
trial practitioners based on prior knowledge of dose-toxicity. A comprehensive guide to the implementation of CRM for
dose-finding trials is available at Wheeler et al. (2019). Note that in standard CRM trials, participant efficacy outcomes are
not considered (neither in the modelling process nor the dose allocation decisions) and one model of dose-toxicity is learned
for all participants.

In our implementation of CRM, we use the O’Quigley et al. (1990) logistic model, which maintains one parameter. Our
model is implemented with the Python probabilistic programming framework, PyMC (Salvatier et al., 2016) and updated
via Bayesian inference (with posterior estimated from NUTS sampling (Hoffman & Gelman, 2011)) after observing the
outcomes of each cohort. We include common safety and logistic constraints in our implementation of CRM: escalation is
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restricted to only the next highest dose (this is also done in SAFE-T) and participants are treated in cohorts of size 3. We
simulate dose skeletons by adding random noise to the the true toxicity probabilities of each scenario (mimicking possible
human error).

C3T (Lee et al., 2020) is a multi-armed bandit method where a parametric model of dose-toxicity and empirical efficacy
estimates are used to allocate doses by subgroup. At each timestep, C3T allocates the dose with the highest empirical
efficacy estimate from the set of doses with estimated toxicities (based on the parametric model) lower than the toxicity
threshold. C3T treats participants from different subgroups separately; models of dose-toxicity are learned by subgroup
and empirical efficacy estimates are maintained by subgroup. At the end of the trial, C3T selects the dose with the highest
estimated efficacy from the set of safe doses, by subgroup.

As in CRM, C3T learns the dose-toxicity relationship using a parametric model, namely the logistic model proposed by
O’Quigley et al. (1990). Their methods, safety bounds, and regret bounds depend on the use of this particular model. As
such, C3T also requires a pre-specified dose skeleton of expected toxicity probabilities. While the experiments in (Lee et al.,
2020) use the underlying true toxicity probabilities of their synthetic dose-finding scenarios to determine a dose skeleton, we
include random noise in our dose skeleton priors, as prior toxicity estimates are unlikely to be perfectly accurate in practice
(as we do in our implementation of CRM experiments).

A notable aspect of C3T is that it allows for patient skipping if the patient budget, B, is less than the maximum number
of timesteps, N . We do not include this aspect in our comparison (we set B = N ), as the difficulties of recruiting for
dose-finding trials and ethical considerations in subject selection indicate that skipping patients would be unlikely in a
realistic setting (Brøgger-Mikkelsen et al., 2020). To mimic a realistic setting (Wheeler et al., 2019), for our experiments of
SAFE-T patients arrive in cohorts of size 3 and models are updated following outcomes observed from all cohort patients.
However, the use of cohorts is not discussed in (Lee et al., 2020) so participants are allocated doses one at a time. C3T also
utilizes an unsafe burn-in period (as is common for multi-armed bandit methods) where each dose is selected in immediate
sequence (without regard for toxicity). Although this would likely not be possible in a practical setting, we have included it
in the implementation of the algorithm to best reflect the reported algorithm. Note that no early stopping rule is defined for
C3T.

E. Additional Experimental Results
E.1. Comparison of optimization approaches

(a)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Final Recommended

Dose Error

Sc
en

ar
io

In
de

x

(b)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Safety Constraint

Violations

Sc
en

ar
io

In
de

x

(c)

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Participant Utility

Sc
en

ar
io

In
de

x

Figure 6: We compare the performance of SAFE-T across scenarios given different optimization techniques: EI (blue star),
UCB (orange plus), and utility (green dot).
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As discussed in Section 3, the efficacy optimization stage of SAFE-T can employ various optimization approaches. In all
other experiments, we report the results of SAFE-T implemented with optimization via expected improvement (EI) on the
dose-efficacy function. We also propose the use of the upper confidence bound (UCB) on efficacy or estimated Thall utility
as possible acquisition functions.

In Figure 6, we compare the performance of SAFE-T optimized with EI, UCB, or estimated utility on our set of synthetic
dose-finding scenarios. Performance is comparable across methods, with very small differences. With respect to final
recommended dose error, EI appears to generally perform slightly better and with smaller disparities across subgroups. The
utility method results in the best overall participant safety.

E.2. Contribution of SAFE-T components

SAFE-T consists of multiple components that work together to address the complex problem constraints and objectives
of dose-finding. Namely, we use multi-output Gaussian processes (MOGP) to address participant heterogeneity in small
sample sizes, restrict our dose set based on a safety constraint to improve participant safety, include a safe exploration
stage to encourage allocation to new doses while maintaining safety to improve learning, optimize over efficacy to improve
participant outcomes, and propose the use of a utility-based final dose recommendation method to improve recommendation
accuracy. In Table 2, we summarize the components of SAFE-T alongside comparison methods. In each of these comparison
methods, one crucial component of SAFE-T is removed so that we can assess its contribution. For example, the MTD
method is SAFE-T without the utility-based final dose recommendation rule, and the No-Exp method is SAFE-T without
the safe expansion stage (instead, it immediately begins optimizing over efficacy). We compare other possible optimization
methods in Appendix E.1 and so exclude them from this comparison. For clarity, we compare groupings of the comparison
algorithms in separate figures.

Table 2: Comparing components of SAFE-T

Name Subgroup
Modelling

Exploration
Stage

Optimization
Stage

Final
Dose Selection

SAFE-T MOGP Yes EI over safe set Max utility of safe set
MTD MOGP Yes EI over safe set MTD
No-Exp MOGP None EI over safe set Max utility of safe set
Unconstrained MOGP None EI Max utility
Sep Separate GPs Yes EI over safe set Max utility of safe set
One One GP Yes EI over safe set Max utility of safe set

In Figure 7, we compare SAFE-T to MTD, where the only change is that the maximum tolerated dose (MTD) is selected as
the final recommended dose. This means that we recommend the highest dose that satisfies the safety constraint, in contrast
to SAFE-T, where we recommend the dose with the highest Thall utility that satisfies the safety constraint. Performance in
safety constraint violations and participant utility are approximately the same as in SAFE-T, which is expected as nothing
during the dose allocation process has changed. However, significant differences are seen with respect to final recommended
dose error. We expect MTD to perform sub-optimally as a recommendation rule because it does not account for possibilities
of plateauing or parabolic dose-efficacy response. And as expected, SAFE-T significantly outperforms MTD in the majority
of scenarios. The exceptions are scenario 1, 10, 13 where MTD is slightly more accurate (the largest gap is 0̃.15; these are
the only scenarios where the optimal dose is the maximum safe dose for both subgroups and the efficacy-response curve is
increasing steadily (without flattening or plateauing).

In Figure 8, we compare SAFE-T to No-Exp and Unconstrained. In No-Exp, the safe exploration stage is removed. Final
recommended dose error is higher, particularly in scenarios where dose-efficacy response differs by subgroup. No-Exp is
slightly safer (resulting in slightly higher utility as well), which makes intuitive sense; the safe exploration stage encourages
allocation to higher or uncertain doses in order to improve final dose recommendation accuracy, sacrificing some safety
(and thus utility) in the process. In the Unconstrained method, where the safety constraint is completely removed, we see
significantly worse performance and larger subgroup disparities across all metrics. Note that in the Unconstrained method,
we still maintain the realistic restriction that only the next highest dose can be assigned in the next timestep.
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Figure 7: We compare the performance of SAFE-T (blue) and MTD (orange) across scenarios.
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Figure 8: We compare the performance of SAFE-T (blue) across scenarios with No-Exp (orange) and Unconstrained (green).

In Figure 9, we compare SAFE-T to Sep and One, which model dose-response relationships differently. In Sep, we
use a separate GPs to model the dose-response relationships of each subgroup. In One, we use one GP to model the
dose-response relationships of the entire population, regardless of subgroup. The performance of Sep is largely comparable
to the performance of SAFE-T, with SAFE-T resulting in slightly lower final recommended dose error in scenarios where
dose-toxicity differs between subgroups. Future work should more thoroughly investigate settings that differentiate the
performance of SAFE-T and Sep, identifying where the use of MOGPs is helpful. As expected, the performance of One is
mostly inferior across all metrics and also results in larger subgroup disparities, particularly in safety.
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Figure 9: We compare the performance of SAFE-T (blue) with Sep (orange) and One (green).

E.3. Further results on impact of subgroup ratios

In Figure 10, we show the result for the impact of changing subgroup ratios on (a) the final recommended dose error and (b)
average participant utility.

This experiment uses scenario 11, where subgroup 0 experiences higher toxicities at each dose and both subgroups experience
the same, plateauing efficacy-response. Across all ratios, we see that SAFE-T maintains a comparatively low recommended
dose error, although disparities do increase as subgroup become more imbalanced. 3 + 3 does not fluctuate much, but the
dose error is high throughout. CRM exhibits an extremely large disparity with differing ratios, indicating its inability to
handle heterogeneity. C3T results in a generally higher final recommended dose error with disparities at imbalanced ratios.
In terms of utility, CRM exhibits improvement as the ratio of subgroup 0 increases. Recall that in CRM, we maintain only a
dose-toxicity model which is used to allocate doses; because subgroup 0 experiences higher toxicity, when CRM is able to
learn a more accurate dose-toxicity model for it, it is able to allocate doses at higher utility. For all other models, utility
remains generally consistent, with SAFE-T resulting in consistently higher utility for both subgroups over all ratios.
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(a) Final Recommended Dose Error (b) Utility

Figure 10: Additional results for subgroup ratios experiment (Section 5.2). Algorithms results are differentiated by color:
3 + 3 (blue), CRM (orange), C3T (green), SAFE-T (red) and by line style: subgroup 0 (solid) and subgroup 1 (dashed). The
ratio shown refers to subgroup 0; for example, at ratio 0.15, subgroup 0 has a 15% probability of arrival.

In Figure 11, we conduct the same experiment with a smaller sample size, where N = 99. We do not run the experiment
on CRM due to computational intensiveness (we see its poor performance clearly with the larger sample size experiment
already as well). We see similar behavior of methods; 3+3 and C3T both exhibit large differences in safety violations, with
the performance of C3T varying widely based on subgroup ratio. However, SAFE-T maintains low and consistent level of
safety violations across subgroups.

Figure 11: Safety violations in subgroup ratio experiment with smaller sample size (N = 99). SAFE-T (red) maintains a
consistently low rate of safety violations across subgroups, while 3+3 (blue) and C3T (green) exhibit disparities.

E.4. Further results on impact of sample size

In Figure 12, we show the results for the impact of samples size on (a) rate of safety constraint violations, and (b) average
participant utility. The results are relatively uninformative, showing that 3 + 3, C3T, and SAFE-T all maintain similar levels
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of safety and participant utility regardless of sample size. We do note that while we report the averaged results over 100
trials at each sample size for each algorithm, the performance of C3T fluctuates quite notably.

(a) Safety Constraint Violations (b) Utility

Figure 12: Additional results for sample size experiment (Section 5.3). Algorithms results are differentiated by color: 3 + 3
(blue), C3T (green), SAFE-T (red) and by line style: subgroup 0 (solid) and subgroup 1 (dashed). All algorithms obtain 0
safety constraint violations for subgroup 1 regardless of sample size, as all doses are safe for subgroup 1.
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Table 3: Description of dose-finding scenario characteristics.

Scn Toxicity Efficacy Subgroup
Variations

Case Study

1 Increasing Increasing None Basic case: tox/eff both increasing, sub-
groups identical.

2 Increasing Plateauing None Basic case: tox increasing, eff plateauing,
subgroups identical

3 Increasing
(Logarithmic)

Increasing
(Logarithmic)

Efficacy: vertical
transformation

Subgroup 1 experiences lower efficacy at
the same dose, resulting in no optimal dose.

4 Increasing
(Exponential)

Plateauing Efficacy: vertical
transformation

Subgroup 0 experiences higher efficacy at
the same dose

5 Increasing
(Exponential)

Parabolic Efficacy: horizontal
transformation

Differing optimal dose for parabolic effi-
cacy curves

6 Increasing Increasing Efficacy: combined
transformation

Very low toxicities, optimal dose is highest
dose

7 Increasing Plateauing Efficacy: horizontal
transformation

Subgroup 1 plateaus at lower dose

8 Plateauing Increasing
(Logarithmic)

Toxicity: vertical
transformation

Subgroup 1 experiences higher toxicity at
same dose, resulting in no optimal dose.

9 Increasing
(Exponential)

Plateauing Toxicity: vertical
transformation

Subgroup 0 experiences higher toxicity at
same dose

10 Increasing
(Logarithmic)

Increasing Toxicity: combined
transformation

Subgroup 0 experiences higher toxicity at
same dose

11 Increasing
(Logarithmic)

Plateauing Toxicity: combined
transformation

Subgroup 0 experiences higher toxicity at
same dose

12 Increasing
(Exponential)

Parabolic Toxicity: vertical
transformation

Subgroup 0: all doses are safe, subgroup 1:
no doses are safe (no optimal)

13 Increasing
(Exponential)

Increasing Both: combined
transformation

Basic case with inconsistent subgroups
shifts

14 Increasing Plateauing Both: combined
transformation

Due to high toxicity, subgroup 1’s optimal
dose is not its plateau inflection point

15 Increasing Parabolic Both: combined
transformation

Efficacy peaks at different doses by sub-
group

16 Increasing
(Logarithmic)

Increasing
(Logarithmic)

Both: combined
transformation

All doses are toxic - no optimal doses. Early
stopping expected.

17 Increasing Increasing Both: combined
transformation

No doses are effective - no optimal doses.

18 Increasing Flat Both: combined
transformation

Efficacy curve is completely flat while toxi-
city increases; therefore the lowest dose is
optimal.
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Figure 13: 18 synthetic dose-finding scenarios with discrete doses. Leftmost column depicts dose-toxicity, middle columns
depicts dose-efficacy, and the rightmost column depicts dose-utility.

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

(d) Scenario 4

(e) Scenario 5
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(f) Scenario 6

(g) Scenario 7

(h) Scenario 8

(i) Scenario 9

(j) Scenario 10
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(k) Scenario 11

(l) Scenario 12

(m) Scenario 13

(n) Scenario 14

(o) Scenario 15
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(p) Scenario 16

(q) Scenario 17

(r) Scenario 18
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Figure 14: 4 synthetic dose-finding scenarios over a continuous dose range.

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

(d) Scenario 4
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