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Abstract—The (computational) complexity involved by beam-
forming in moving constellations of (nano) satellites is investigated
by means of illustrative numerical experiments. While the num-
ber of radiators in such three-dimensional (3D) array antennas is
not large, evaluating their radiation patterns entails challenging
computational intricacies in view of the satellites being in motion
and each satellite performing general 3D rotations. As a result,
the relevant array radiation patterns become time-dependent, the
elementary radiation patterns being themselves time-dependent.
The discussed experiments will illustrate the time evolution of
the radiation pattern for given individual satellite orbits and
rotation laws. At the same time, they will provide a basis for
estimating the computational complexity involved by predicting
the complete beamforming in future space-bound remote sensing
missions using constellations of (nano) satellites.

I. INTRODUCTION

In the past few decades, radio astronomy was the main
driving force in the quest towards understanding the origin
and the evolution of the Universe. Presently, Earth based and
space platforms effectively cover the vast majority of the
electromagnetic (EM) spectrum. Recently, space-bound instru-
mentation has concentrated on the (low) Terahertz spectrum,
with the Herschel Space Observatory offering groundbraking
discoveries on the Universe’s structure and evolution and the
SPace Infrared telescope for Cosmology and Astrophysics
(SPICA) [1] mission being expected to drastically widen the
exploration capabilities in that range.

Nonetheless, the 0.3–30 MHz frequency range is, practi-
cally, unexplored. This situation may seem surprising, since
this spectrum allows studying the early Cosmos at high hydro-
gen red shifts, the so-called dark ages, extragalactic surveys,
(extra) solar planetary bursts and high energy particle physics
[2]. The reason for the lack of measurements in the 0.3–
30 MHz range is twofold: On the one hand, Earth-bound
reception in this range is severely hampered [2]–[4] due to the
ionosphere and by Earth bounded radio-frequency interference.
On the other hand, space-bound observation requires huge
apertures, that are not practical with present-day technology.

A particularly promising solution to performing studies
in this range is by using constellations of remote sensing
(nano) satellites. This strategy is at the centre of the pro-
posed Orbiting Low Frequency Antennas for Radio Astronomy
(OLFAR) distributed radio telescope [3]–[5]. The practical
realisation of OLFAR builds up on recent progress in Earth-
bound, large aperture, distributed radio astronomy. However,

straightforwardly porting the relevant technologies to satellite
constellations is impossible due to the inherent computing and
communication limitations of space-bound platforms. Conse-
quently, effective measures are now sought for ensuring the
tractability of the implementation of OLFAR.
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Fig. 1. Processing variants for the OLFAR concept. (a) Raw data transmis-
sion and beamforming on Earth; (b) beamforming in the constellation and
transmission of (partially) processed data.

In this respect, it is noted that the sensing satellite clusters
can be construed as sparse, random, three-dimensional (3D) ar-
ray antennas [6]. As with any array antenna, pointing the beam
to radio sources of choice requires beamforming the received
signals. Here, two avenues are available: transferring the full
raw digital data to Earth and performing the beamforming there
(see Fig. 1.a) or beamforming at the constellation level and
transferring only (partially) processed information to Earth (see
Fig. 1.b). Although relying on the huge computing resources
that are readily available on Earth, the former avenue can be



easily ruled out on grounds of the achievable communication
channel capacities being largely insufficient for transferring
the immense quantity of raw data even when state-of-the-
art compression techniques were applied to this end. This
observation applies the more so when the constellations are
at (relatively) large distances from the Earth. On the contrary,
the latter strategy may result in a significantly smaller amount
of data that may, in principle, be accommodated within the
channel capacity. However, the computational resources within
the constellation are limited, this demanding a careful tailoring
of the processing algorithms.

This papers investigates the (computational) complexity
involved by the 3D array beamforming. The task’s intricacy
is largely enhanced by the fact that, in view of limited fuel
availability, the spatial orientation of the satellites cannot
be but seldom corrected. Consequently, apart from moving
along prescribed orbits, the satellites also perform general 3D
rotations. Consequently, beamforming will be necessarily car-
ried out based on the satellites’ time-dependent, non-identical
elementary radiation patterns.

The paper starts by describing the investigated configura-
tion. A framework is then given for evaluating the radiation
patterns of 3D array antennas with moving elements. The
radiation from rotating satellites and some important aspects
concerning moving EM radiators are elaborated upon in the
Appendix. The theoretical ideas will be illustrated via numer-
ical experiments and, finally, conclusions will be drawn.

II. EXAMINED CONFIGURATION

The present study concerns a general 3D configuration.
In it, position is specified by the coordinates {x, y, z} with
respect to a background Cartesian reference frame with origin
O and three mutually orthogonal unit vectors {x̂, ŷ, ẑ} that,
in this order, form a right-handed system. The position vector
is r = xx̂ + yŷ + zẑ, with |r| = r and ξ̂ = r/r.
A (’universal’) spherical coordinate system with the same
origin and coordinates {ϑ, ϕ} is also considered, ϑ measuring
the tilting from ẑ and ϕ the trigonometric rotation from x̂.
Correspondingly, the three mutually orthogonal unit vectors
{ϑ̂, ϕ̂, ξ̂} form, in this order, a right-handed system. This
coordinate system will be employed as a basis for evaluating
the radiation patterns of the investigated antenna system. Note
that ξ̂ and {ϑ, ϕ} will be hereafter used interchangeably for
defining an observation direction. The time coordinate is t.

The configuration consists of N identical (nano) satellites.
The antenna system of each satellite consists of 3 reciprocally
orthogonal dipole antennas, their lengths being lk (k = 1, 2, 3).
The reference centre of each satellite, that is also taken as
the reference centre of the relevant antenna system, is r′n(t)
(n = 1, . . . , N), the trajectories r′

n(t) being assumed known.
Each satellite is allowed to perform general 3D rotations, the
corresponding, time-dependent Euler angles [7, Section 4.4]†
αn(t), βn(t) and γn(t) being also assumed known.

The excitation of the antenna systems is taken to be time-
harmonic, with frequency f and angular frequency ω = 2πf .

†Denoting the Euler angles as α, β and γ is preferred in this paper for
avoiding confusions with the {ϑ, ϕ} coordinates in the ‘universal’ spherical
reference frame. The following correspondence with the notation in [7, Section
4.4] holds: α↔ φ, β ↔ θ and γ ↔ ψ.

The satellites radiate in free space, with electric permittivity
ε0, magnetic permeability μ0 and wavespeed c0 = (ε0μ0)

−½.
Correspondingly, the wavenumber is k0 = ω/c0 and the wave-
length is λ = c0/f . Furthermore, the vectorial wavenumber is
k = k(ϑ, ϕ) = kxix + kyiy + kziz , with

kx = k0 sin(ϑ) cos(ϕ) (1)
ky = k0 sin(ϑ) sin(ϕ) (2)
kz = k0 cos(ϑ) (3)

for ϑ ∈ [0, π] and ϕ ∈ [0, 2π).

III. RADIATION PROPERTIES OF CONSTELLATION OF
SATELLITES IN MOTION

In line with [6], [8], the far-field (electric field strength)
characteristic‡ radiated by an array in the observation direction
ξ is expressed as

E∞(ξ̂) =
N∑

n=1

{
E∞

n (ξ̂) exp [−j (k − ksc)·r′
n]
}

(4)

in which E∞
n (ξ̂) (n = 1, . . . , N) are the far-field charac-

teristics of the satellites, r′n = rn − rc, with rn being
the position vectors of the individual radiators and rc the
position vector of the array antenna’s reference centre and
the terms exp (jksc·r′n) represent the progressive phase shift,
with ksc = k(ξsc) corresponding to the scanning direction ξsc
(given by {ϑsc, ϕsc}).

However, unlike in the cases studied in [6], [8], the
constellations of satellites investigated in this paper are in
motion. Consequently, (4) must be adjusted as

E∞(ξ̂, t) =

N∑
n=1

{
E∞

n (ξ̂, t) exp [−j (k − ksc)·r′n(t)]
}

(5)

in which E∞
n (ξ̂, t) account for the known rotation of the

satellites (see the derivation in Appendix A) while r′n(t) =
rn(t)− rc(t) account for their known trajectories.

Note that in formulating (5) use was made of the “low-
velocity approximation” (see Appendix B for details). In view
of this assumption, the individual satellites’ radiation can
be decoupled from their motion. Here, it can be reasonably
expected that the low-velocity approximation is applicable to
the relative velocities ∂tr′

n(t) and to the angular velocities of
the satellite rotations. However, its applicability to the absolute
velocity ∂trc(t) deserves a detailed analysis and will have to
be assessed on a case-to-case basis. In view of the feasibility
character of this study, the low-velocity approximation will be
hereafter consistently accounted for.

As stressed in [8], (4) and (5) do not allow the usual
factoring of the radiated field into an element and an array
characteristics. The polarisation pattern of the radiated field is
extremely intricate and, moreover, time-dependent in (5). This
may be a matter of concern when polarisation matching with
a target may be needed. Addressing this aspect is outside the
scope of this analysis.

‡The far-field characteristic [10, Eq. (9)] follows from the corresponding
far-field quantities, by ignoring the (4πr)−1 dependence.



The satellite constellations are only expected to sense
radiated power. Consequently, evaluating the radiation pattern
of the relevant 3D array antennas will suffice. As usually, the
directivity pattern [9, Section 2.2], [10] is expressed as

D(ξ̂, t) =
4π

[
E∞(ξ̂, t) ·E∞∗(ξ̂, t)

]
∫

ξ̂′·ξ̂′=1

[
E∞(ξ̂′, t) ·E∞∗(ξ̂′, t)

]
dΩ

(6)

with ‘*’ denoting complex conjugation and the integration
being extended over all observation directions. Evidently, the
directivity pattern will be time-dependent.

IV. ILLUSTRATIVE NUMERICAL EXPERIMENTS

The framework discussed in the section above is now
applied to a constellation of 5 satellites. In line with [14],
the satellite antenna systems operate at 40MHz. Two of the
antennas are 9.6m long, with the third being 0.3m longer.
The satellites are located in a fixed planar, rectangular cross
layout, the distance between the satellites’ reference centres
being λ0 at 40MHz. The satellites are taken to be initially
aligned and are allowed to rotate, the Euler angular frequencies
ωα,n = ∂tαn, ωβ,n = ∂tβn, and ωγ,n = ∂tγn, n = 1, . . . , 5,
having the constant values 0 rad/s, 1 rad/s and 2 rad/s, respec-
tively. The Euler angular frequencies are deliberately taken
different such that to better illustrate the time evolution of the
radiation patterns as a result of the relative rotations.

In all examined cases, the array is scanned at {ϑsc, ϕsc} =
{0◦, 0◦}. In view of symmetry, the array factor exhibits a
secondary (image) lobe at {180◦, 0◦}. Moreover, the chosen
inter-element spacing leads to the onset of array factor grating
lobes at {90◦, 0◦}, {90◦, 90◦}, {90◦, 180◦} and {90◦, 270◦},
respectively. The rotation of the dipoles will affect the main,
secondary and grating lobes’ amplitude and, in some cases,
may also result in a minor squinting of these lobes.

A. Rotation dependent radiation patterns

A first set of numerical experiments concerns the sampling
of the radiation patterns at successive instants t = 0, 0.2, 0.4
and 0.6 seconds. The relevant snapshots are shown in Fig. 2.
The transformations that the radiation patterns undergo as a
result of the satellite rotations are clearly visible. The radiation
pattern evolves from the original, desired version in Fig. 2.a
to the situations in Fig. 2.c,d having no clear main beam and,
thus, of no practical value.

B. Integrated array processing

Beamforming requires transferring the (digitised) received
information from each nano-satellite to a central hub where it
is processed. This results in a huge amount of data having to
be transferred that, in turn, places very high demands on the
relevant transmission channel. One effective way for drastically
reducing the amount of transferred data is by integrating the
received electric field at each satellite and relaying only the
integrated data to the central hub.

The effect of integration is illustrated in Fig. 3. For con-
sistency with the previous analysis, the integration is extended
until the same instants t = 0 (no integration), 0.2, 0.4 and 0.6

seconds. The employed algorithm is based on a fine sampling
of the integration interval (the time step being Δt = 0.01 s)
and a numerical integration via the rectangular rule. From the
plots it can be inferred that resorting to integration not only
that reduces the amount of transferred data but also tempers
the (rate of) deterioration of the radiation pattern.

C. Discussion

The pattern evolutions examined in Sections IV-A and IV-B
illustrate a rapid and accentuated deterioration of the cluster’s
radiation pattern. It must be stressed that, for highlighting the
effect of the satellites’ rotation on beamforming, the angular
velocities were chosen disproportionately large. In a practical
case, the integration time would be chosen such that, for
the estimated angular velocities of the satellites, the total
rotation between re-gauging and re-beamforming to be limited.
Nevertheless, the present analysis provides insight in the effect
of the individual rotations and, thus, offers a handle to finding
an optimal balance between an acceptable pattern deterioration
and integration time (and, implicitly, data traffic).

V. CONCLUSIONS

The effect of general 3D rotations of the (nano) satel-
lites on the radiation pattern of constellations was examined
by means of illustrative numerical experiments. The time-
dependent character of the elementary radiation patterns to
be beamformed directly influences the (computational) com-
plexity involved by beamforming. The effect of individual
pattern integration over suitably chosen periods was also
evidenced. The analysis provides insight in the expected effect
of satellites’ the 3D rotations on the total radiation pattern. In
this manner, it offers a handle to finding an optimal balance
between pattern deterioration and integration time.

APPENDIX

A. Radiation properties of rotating satellites

As stated in Section II, all N (nano) satellites are identical,
their antenna systems consisting of 3 reciprocally orthogonal
dipoles of lengths lk (k = 1, 2, 3). Without loss of generality,
the dipoles are taken to be oriented along d̂n,1 = x̂, d̂n,2 = ŷ
and d̂n,3 = ẑ (n = 1, . . . , N), respectively. Each satel-
lite performs general 3D rotations, the corresponding, time-
dependent Euler angles αn(t), βn(t) and γn(t) being known.
The radiation from individual satellites is henceforth discussed.

Based on [9, Eq. (4.62.a)], the far-field (electric field
strength) characteristic corresponding to a dipole of length l
and oriented along ẑ has the expression

E∞
ϑ (I, l, ξ̂) = jη02I exp(−jk0r)

cos[θl cos(ϑ)] − cos(θl)

sin(ϑ)
(7)

where I is the feeding current and

θl = k0l/2 = πl/λ0. (8)

Applying L’Hospital’s rule in (7) entails that lim
ϑ↓0

E∞
ϑ (ξ̂) =

lim
ϑ↑π

E∞
ϑ (ξ̂) = 0, with ϑ ↓ 0 implying ξ̂ → ẑ and ϑ ↑ π
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Fig. 2. Successive radiation pattern snapshots. The corresponding time instants and Euler angles are given in the tables.

implying ξ̂ → −ẑ. Then, by analytic continuation, E∞
ϑ (ẑ) =

E∞
ϑ (−ẑ) = 0. By observing that ϑ̂ can be written as

ϑ̂ = ξ̂ × ξ̂ × ẑ∣∣ξ̂ × ẑ
∣∣ , for ξ̂ × ẑ �= 0 (9)

with |ξ̂ × ẑ| = sin(ϑ) (no sign ambiguity arising due to 0 <
ϑ < π), the applicability of (7) can be extended to the general
case of a dipole oriented along a direction d̂ as

E∞
d (d̂, I, l, ξ̂)

=

⎧⎪⎪⎨
⎪⎪⎩
jη02I exp(−jk0r)

cos(θlξ̂ · d̂)− cos(θl)
∣
∣ξ̂ × d̂

∣
∣

êd, for ξ̂ × d̂ �= 0

0, for ξ̂ × d̂ = 0

(10)

with

êd = ξ̂ × ξ̂ × d̂∣∣ξ̂ × d̂
∣∣ . (11)

Equation (10) allows expressing the far-field characteristic
corresponding to a still-standing satellite as

E∞
n (ξ̂) =

3∑
k=1

E∞
d (d̂n,k, In,k, lk, ξ̂), for n = 1, . . . , N. (12)

By now invoking the known 3D rotations αn(t), βn(t) and
γn(t), the time-dependent far-field characteristic corresponding
to the rotating satellite becomes

E∞
n (ξ̂, t) =

3∑
k=1

E∞
d [Mn(t)d̂n,k, In,k, lk, ξ̂],

for n = 1, . . . , N. (13)

with the matrix Mn(t) being given in (14) [7, Eq. (4.46)].

Equation (13) is used in the main text.

B. Beamforming & EM radiation from sources in motion

Although performing the beamforming inside the con-
stellation presents clear tractability advantages, its concrete
realisation must account for the specificity of the EM problem
at hand. Concretely, the beamforming implies the exchange of
(reference) signals between the satellites in the constellation,
the accuracy of the beamforming being determined by the
accuracy of the shape and timing of the exchanged signals.
Here, [11] has cogently demonstrated that when the transmit-
ting and receiving units are in relative motion, the EM transfer
is unequivocally relativistic in nature, this having the following
pivotal consequences:

• There is no simple relationship between the transmit-
ted and received pulses. Moreover, the interrelation
between the pulse shapes is no longer a time con-
volution, this largely complicating the processing of
the incoming signals and resulting, quite likely, in
positioning and/or timing errors.

• The Lorentz contraction in space and the Lorentz
time dilatation may further aggravate the relevant
positioning and/or timing errors.

Simply ignoring these aspects can have egregious conse-
quences, as demonstrated, for instance, by the NASA-ESA
Cassini-Huygens mission to the Saturn moon Titan [12].

This situation is alleviated when the ratio between the
sources’ velocity and c0 is such that the “low-velocity approxi-
mation” [11] applies. In such cases, [13] gives some indications
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Fig. 3. Successive integrated radiation pattern. The corresponding time instants and Euler angles are given in the tables.

Mn(t) =

[
cos(βn) cos(αn) sin(γn) sin(βn) cos(αn)− cos(γn) sin(αn) cos(γn) sin(βn) cos(αn) + sin(γn) sin(αn)
cos(βn) sin(αn) sin(γn) sin(βn) sin(αn) + cos(γn) cos(αn) cos(γn) sin(βn) sin(αn)− sin(γn) cos(αn)

− sin(βn) sin(γn) cos(βn) cos(γn) cos(βn)

]

with αn = αn(t), βn = βn(t), γn = γn(t). (14)

on the framework to be applied for processing the interchanged
signals. For this study, the approximation allows decoupling
the satellites’ radiation properties from their motion.

It must be noted that the intricacies pertaining to moving
radiating sources would still manifest themselves when raw
data were transmitted to Earth for processing. It can be
expected that the larger velocities applying to that model
would have a substantially more pronounced effect on the
communication channel, this providing additional arguments
against such a solution.
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