Practical Conditional Neural Processes Via Tractable Dependent Predictions
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TLDR: We introduce a scalable Conditional Neural Process model which models statistical dependencies and has an analytically tractable log-likelihood.

Modelling Statistical Dependencies
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Figure 1: Samples from the predictives of a ConvCNP (left) and a ConvGNP (right).

Directly learn predictive mean m and covariance K as function of context x. and target x;

flrir), Kij=k(g(@i,1), g(215, 1))

where r = r(X.,x;), f and g are neural networks, k is positive-definite.
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Applicable to arbitrary architectures, e.g. translation equivariant networks.
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Experiments with Synthetic Data
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Figure 2: Model predictive covariances on
synthetic GP data.

Experiments with Real Data

Straightforward handling of multi-output regression

m;, = fa(xt,ia I‘), Kijab — k(ga<xt,ia I'), gb(xt,ja I')) (2)
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Figure 4: ConvGNP marginals and samples on multi-output regression task with EEG data.

MOGP
—12.7 £ 0.42

ConvGNP
—5.27 £+ 0.01

ConvNP
—3.96 £+ 0.01

ConvGNP
—1.24 +0.00

Log Lik.

Table 1: Log-likelihoods on multi-output regression with EEG data.
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Figure 3: Model marginals and samples on
synthetic predator-prey data.

Competitive performance in climate down-scaling. Modelling dependencies:

¢ Improves predictive log-likelihood.

¢ Enables sampling coherent temperature fields for downstream estimation.
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Figure 5: ConvCNP (top) and ConvGNP (bottom) on a larger scale climate down-scaling task.



