Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

Andrew Y. K. Foong^{*1}, Wessel P. Bruinsma^{*1 2}, Jonathan Gordon^{*1}, Yann Dubois¹, James Requeima^{1 2}, and Richard E. Turner^{1 3} ¹University of Cambridge, ²Invenia Labs, ³Microsoft Research Cambridge

What are Neural Processes (NPs)?

NPs meta-learn a map from datasets to stochastic processes.

Translation Equivariance

prediction map ϕ is **translation equivariant**:

We propose the **Convolutional Neural Process** (ConvNP):

- Uses convolutional neural networks (CNNs) for ϕ .
- Is translation equivariant.
- Can perform **spatial generalisation**.

Proposed Training Objective

$$\log p(\mathbf{y}_{\mathcal{T}} | \mathbf{x}_{\mathcal{T}}, D_{\mathcal{C}}) = \log \int p(\mathbf{y}_{\mathcal{T}} | \mathbf{x}_{\mathcal{T}}, z) p(z | D_{\mathcal{C}}) dz$$
$$\approx \log \frac{1}{L} \sum_{\ell=1}^{L} p(\mathbf{y}_{\mathcal{T}} | \mathbf{x}_{\mathcal{T}}, z_{\ell}), \quad z_{\ell} \sim p$$

