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• AR CNPs: take a CNP and feed predictions back into the model in an autoregressive fashion.

XA “free” performance boost: no modifications to model or training procedure!

XProduces correlated and non-Gaussian predictions without requiring approximations.

7 However, depends on number and order of data, and requires multiple forward passes.

Meta-Learning

• In meta-learning, we have a meta–data set:
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Neural Processes

• A neural process is a parametrisation of

πθ :

data sets

D → P
stochastic processes

using neural networks.

• qθ(y | x, D): the density of πθ(D) at x.

• Training:
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XExtremely flexible and versatile

X Fast, probabilistic predictions

X Simple to train

XWork well in practice

Autoregressive Conditional Neural Processes (AR CNPs)

• Let q(y | x, D) be a Conditional Neural Process [CNP; 1], possibly an existing/pretrained one!

• AR CNPs: feed predictions of CNP autoregressively back into the model:

q(AR CNP)(y1:3 | D) = q(y1 | x1, D) q(y2 | x2, D ∪ (x1, y1)) q(y3 | x3, D ∪ (x1:2,y1:2)).

• Neural AR models certainly not new. Running neural processes in AR mode not yet explored!

XA “free” performance boost: no modifications to model or training procedure!

Correlated preds Non-Gaussian preds Exact training Consistent preds

Conditional NPs [1] 7 X X X
Gaussian NPs [2] X 7 X X
Latent-variable NPs [3] X X 7 X
Autoregressive CNPs X X X 7

7 However, depends on number and order of data, and requires multiple forward passes of the CNP.

Theoretical Analysis of Idealised Setting

• Analyse idealised setting of infinite data and
infinite capacity.

⇒moment-matched posterior prediction map!

• Prop. 2.1: In this setting, CNPs perform
better than GNPs.
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Synthetic Experiment on Sawtooth Data

• Sample of ConvCNP [4]:

• Same ConvCNP, but run in AR mode:

Real-World Experiment on Cloud Coverage Data

• AR ConvCNP spatially interpolates simulated cloud cover observations over Antarctica:
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